Skip to main content
Log in

Influence of acute maximal exercise on lecithin: cholesterol acyltransferase activity in healthy adults of differing aerobic performance

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

To document the possible influence of a single episode of maximal aerobic stress on the serum lecithin: cholesterol acyltransferase (LCAT) activity in subjects with differing histories of training, two groups of healthy male adults [controls (C),n = 18, 28.6 years, SD 5.2, 50.1 ml · kg−1 · min−1 maximal O2 uptake (VO2max), SD 5.3; endurance trained athletes (T),n = 18, 31.4 years, SD 8.8, 65.0 ml · kg−1 · min−1 VO2max, SD 2.8] were examined in a maximal aerobic stress test. In addition to the routine assessment of lipid status, LCAT activity was measured immediately before and after exercise. At rest nearly identical LCAT activity values were found in both groups: C 64.4 nmol · ml−1 · h−1, SD 16.7 vs T 65.0 nmol · ml−1 · h−1, SD 20.9. The post-exercise LCAT values induced by the maximal stress test increased significantly to (C) 95.7 nmol · ml−1 · h−1, SD 23.5, +48.6%,P<0.001; (T) 83.5 nmol · ml−1 · h−1, SD 24.3, +29.1%,P<0.01. Neither the pre nor the post-exercise individual LCAT activity values showed any significant correlation to the corresponding data on physical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akanuma Y, Kuzuyat T, Hayashi M, Ide T, Kuzuya N (1973) Positive correlation of serum lecithin: cholesterol acyltransferase activity with relative body weight. Eur J Clin Invest 3:136–141

    Google Scholar 

  • Albers JJ, Bergelin RO, Adolphson JL, Wahl PW (1982) Population based reference values for lecithin-cholesterol-acyltransferase (LCAT). Atherosclerosis 43:369

    Google Scholar 

  • Berg A, Keul J (1981) Physiological and metabolic response of female athletes during laboratory and field exercise. Med Sport 14:77–96

    Google Scholar 

  • Berg A, Keul J (1984) Beeinflussung der Serumlipoproteine durch körperliche Aktivität. Dtsch Ärzteblatt - Ärztl Mitt 81:1–7

    Google Scholar 

  • Berg A, Johns J, Baumstark M, Kreutz W, Keul J (1983) HDL subfractions after a single, extended episode of physical exercise. Atherosclerosis 47:231–240

    Google Scholar 

  • Cook TC, Laporte RE, Washburn RA, Traven ND, Slemenda CW, Metz KF (1986) Chronic low level physical activity as a determinant of high density lipoprotein cholesterol and subfractions. Med Sci Sports Exerc 18:653–657

    Google Scholar 

  • Dieplinger H, Kostner GM (1980) The determination of lecithin: cholesterol acyltransferase in the clinical laboratory: a modified enzymatic procedure. Clin Chim Acta 106:319–342

    Google Scholar 

  • Dieplinger H, Zechner R, Kostner GM (1985) The in vitro formation of HDL2 during the action of LCAT: the role of triglyceride-rich lipoproteins. J Lipid Res 26:273–282

    Google Scholar 

  • Dufaux B, Assmann G, Hollmann W (1982) Plasma lipoproteins and physical activity: a review. Int J Sports Med 3:123–136

    Google Scholar 

  • Eggstein M, Kreutz FH (1966) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe, 1. Mitteilung. Klin Wochenschr 44:262

    Google Scholar 

  • Eisenberg S (1984) High density lipoprotein metabolism. J Lipid Res 25:1017–1058

    Google Scholar 

  • Fielding CJ (1986) Mechanisms of action of lecithin-cholesterol-acyltransferase. Methods Enzymol 129:783–790

    Google Scholar 

  • Frey I, Berg A, Baumstark MW, Collatz KG, Keul J (1990) Effects of age and physical performance capacity on distribution and composition of high-density-lipoprotein-subfractions in men. Eur J Appl Physiol 60:441–444

    Google Scholar 

  • Glomset JA (1968) The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 9:155–167

    Google Scholar 

  • Haffner SM, Applebaum-Bowden D, Wahl PW, Hoover JJ, Warnick GR, Albers JJ, Hazzard WR (1985) Epidemiological correlates of high-density lipoprotein subfractions, apolipoprotein A-I, A-II and D and LCAT. Arteriosclerosis 5:169–177

    Google Scholar 

  • Haskell WL (1984) Exercise induced changes in plasma lipids and lipoproteins. Prev Med 13:23–36

    Google Scholar 

  • Haskell WL (1986) The influence of exercise training on plasma lipids and lipoproteins in health and disease. Acta Med Scand [Suppl] 711:25–37

    Google Scholar 

  • Herbert PN, Bernier DN, Cullinane EM, Edelstein L, Kantor MA, Thompson PD (1984) High density lipoprotein metabolism in runners and sedentary men. JAMA 252:1034–1037

    Google Scholar 

  • Kantor MA, Cullinane EM, Herbert PN, Thompson P (1984) Acute increase in lipoprotein lipase following prolonged exercise. Metabolism 33:454–457

    Google Scholar 

  • Kantor MA, Cullinane EM, Sady SP, Herbert PN, Thompson PD (1987) Exercise acutely increases high density lipoprotein-cholesterol and lipoprotein lipase activity in trained and untrained men. Metabolism 36:188–192

    Google Scholar 

  • Keul J, Linnet N, Eschenbruch E (1968) The photometric autotitration of free fatty acids. Z Klin Chem Klin Biochem 6:394

    Google Scholar 

  • Krauss RM, Wood PD, Giotas C, Waterman D, Lindgren FT (1979) Heparin-released plasma lipase activities and lipoprotein levels in distance runners (abstract no. 278). Circulation 59-60 [Suppl II]73

    Google Scholar 

  • Kullmer T, Kindermann W (1985) Apolipoproteine und Lipoproteine bei unterschiedlicher körperlicher Aktivität und Leistungsfähigkeit. Klin Wochenschr 63:1102–1109

    Google Scholar 

  • Kuusi T, Nikkilä EA, Saarinen P, Varjo P, Laitinen LA (1982) Plasma high density lipoprotein HDL2, HDL3 and postheparin plasma lipase in relation to parameters of physical fitness. Arteriosclerosis 41:209–219

    Google Scholar 

  • Marniemi J, Dahlström S, Kvist M, Seppänen A, Hietanen E (1982) Dependence of serum lipids and lecithin: cholesterol acyltransferase levels on physical training in young men. Eur J Appl Physiol 49:25–35

    Google Scholar 

  • Miller NE, Rajput-Williams J, Nanjee MN, Samuel L, Albers JJ (1988) Relationship of high density lipoprotein composition to plasma lecithin: cholesterol acyltransferase concentration in men. Atherosclerosis 69:123–129

    Google Scholar 

  • Nikkilä EA, Taskinen MR, Rehunen S, Härkonen M (1978) Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism 27:1661–1671

    Google Scholar 

  • Nikkilä EA, Kuusi T, Taskinen M-R, Tikkanen MJ (1984) Regulation of lipoprotein metabolism by endothelial lipolytic enzymes. In: Carlsson LA, Olsson AG (eds) Treatment of hyperlipoproteinemia. Raven Press, New York pp 77–84

    Google Scholar 

  • Norum KR (1984) Role of lecithin: cholesterol acyltransferase in the metabolism of plasma lipoproteins. In: Carlsson LA, Olsson AG (eds) Treatment of hyperlipoproteinemia. Raven Press, New York pp 69–75

    Google Scholar 

  • Patsch JR, Gotto AM, Olivecrona T, Eisenberg S (1978) Formation of HDL2 like particles during lipolysis in vitro. Proc Natl Acad Sci USA 75:4519–4523

    Google Scholar 

  • Peltonen P, Marniemi J, Hietanen E, Vuori I, Ehnholm C (1981) Changes in serum lipids, lipoproteins and heparin releasable lipolytic enzymes during moderate physical training in man: a longitudinal study. Metabolism 30:518–526

    Google Scholar 

  • Rajaram OV, Barter PJ (1986) Increases in the particle size of high density lipoproteins induced by purified lecithin: cholesterol acyltransferase: effect of low-density lipoproteins. Biochim Biophys Acta 877:406–414

    Google Scholar 

  • Rönnemaa T, Viikari J, Mamiemi J (1989) Lecithin: cholesterol acyltransferase activity in children and young adults. Atherosclerosis 77:7–13

    Google Scholar 

  • Schmitz G, Assmann G, Melnik B (1981) The role of lecithin: cholesterol acyltransferase in high density lipoprotein 3/high density lipoprotein 2 interconversion. Clin Chim Acta 119:225–236

    Google Scholar 

  • Stubbe I, Hansson P, Gustafson A, Nilsson-Ehle (1983) Plasma lipoproteins and lipolytic enzyme activities during endurance training in sedentary men: changes in high density lipoprotein subfractions and composition. Metabolism 32:1120–1128

    Google Scholar 

  • Taskinen M-R, Kashyap ML, Srivastava LS, Ashraf M, Johnson JD, Perisutti G, Brady D, Glueck CJ, Jackson RL (1982) In vitro catabolism of human plasma very low density lipoproteins. Atherosclerosis 41:381–394

    Google Scholar 

  • Tsopanakis C, Kotsarellis D, Tsopanakis A (1988) Plasma LCAT activity in elite athletes from selected sports. Eur J Appl Physiol 58:262–265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, I., Baumstark, M.W., Berg, A. et al. Influence of acute maximal exercise on lecithin: cholesterol acyltransferase activity in healthy adults of differing aerobic performance. Europ. J. Appl. Physiol. 62, 31–35 (1991). https://doi.org/10.1007/BF00635630

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00635630

Key words

Navigation