Skip to main content
Log in

Influence of acute exercise of varying intensity and duration on postprandial oxidative stress

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal.

Purpose

To compare the impact of acute exercise on postprandial oxidative stress.

Methods

We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21–35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70 % heart rate reserve; (3) five 60-s sprints at 100 % max capacity; and (4) ten 15-s sprints at 200 % max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status.

Results

No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress.

Conclusion

In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AOPP:

Advanced oxidation protein products

ANOVA:

Analysis of variance

BMI:

Body mass index

CAT:

Catalase

ECG:

Electrocardiograph

EDTA:

Ethylenediaminetetraacetic acid

GLUT4:

Glucose-4 transport protein

GPx:

Glutathione peroxidase

GXT:

Graded exercise test

HR:

Heart rate

H2O2 :

Hydrogen peroxide

LPL:

Lipoprotein lipase

MDA:

Malondialdehyde

VO2max :

Maximal oxygen consumption

RONS:

Reactive oxygen and nitrogen species

RPM:

Revolutions per minute

SOD:

Superoxide dismutase

TAG:

Triglyceride

TEAC:

Trolox equivalent antioxidant capacity

VLDL:

Very low-density lipoprotein

References

  • Andersen E, Hostmark AT (2007) Effect of a single bout of resistance exercise on postprandial glucose and insulin response the next day in healthy, strength-trained men. J Strength Cond Res 21:487–491. doi:10.1519/R-20105.1

    PubMed  Google Scholar 

  • Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. doi:10.1172/JCI37048

    Google Scholar 

  • Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell G, Timmons JA (2009) Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord 9:3. doi:10.1186/1472-6823-9-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Berzosa C, Cebrian I, Fuentes-Broto L et al (2011) Acute exercise increases plasma total antioxidant status and antioxidant enzyme activities in untrained men. J Biomed Biotechnol 2011:540458. doi:10.1155/2011/540458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bloomer RJ, Fisher-Wellman KH (2009a) Systemic oxidative stress is increased to a greater degree in young, obese women following consumption of a high fat meal. Med Cell Longev 2:1–7

    Article  Google Scholar 

  • Bloomer RJ, Fisher-Wellman KH (2009b) Postprandial oxidative stress in exercise trained and untrained cigarette smokers. Int J Environ Res Public Health 6:579–591

    Article  PubMed Central  PubMed  Google Scholar 

  • Bloomer RJ, Fisher-Wellman KH (2010) Lower postprandial oxidative stress in women compared to men. Gend Med 7:340–349

    Article  PubMed  Google Scholar 

  • Bloomer RJ, Solis AD, Fisher-Wellman KH, Smith WA (2008) Postprandial oxidative stress is exacerbated in cigarette smokers. Br J Nutr 99:1055–1060. doi:10.1017/S0007114507844370

    Article  CAS  PubMed  Google Scholar 

  • Bloomer RJ, Cole BJ, Fisher-Wellman KH (2009a) Racial differences in postprandial oxidative stress with and without acute exercise. Int J Sport Nutr Exerc Metab 19:457–472

    CAS  PubMed  Google Scholar 

  • Bloomer RJ, Ferebee DE, Fisher-Wellman KH, Quindry JC, Schilling BK (2009b) Postprandial oxidative stress: influence of sex and exercise training status. Med Sci Sports Exerc 41:2111–2119. doi:10.1249/MSS.0b013e3181a9e832

    Article  CAS  PubMed  Google Scholar 

  • Bloomer RJ, Fisher-Wellman KH, Tucker PS (2009c) Effect of oral acetyl L-carnitine arginate on resting and postprandial blood biomarkers in pre-diabetics. Nutr Metab 6:25. doi:10.1186/1743-7075-6-25

  • Bloomer RJ, Fisher-Wellman KH, Bell HK (2010a) The effect of long-term, high-volume aerobic exercise training on postprandial lipemia and oxidative stress. Phys Sportsmed 38:64–71. doi:10.3810/psm.2010.04.1763

    Article  PubMed  Google Scholar 

  • Bloomer RJ, Kabir MM, Marshall KE, Canale RE, Farney TM (2010b) Postprandial oxidative stress in response to dextrose and lipid meals of differing size. Lipids Health Dis 9:79. doi:10.1186/1476-511X-9-79

    Article  PubMed Central  PubMed  Google Scholar 

  • Borer KT, Wuorinen EC, Lukos JR, Denver JW, Porges SW, Burant CF (2009) Two bouts of exercise before meals, but not after meals, lower fasting blood glucose. Med Sci Sports Exerc 41:1606–1614. doi:10.1249/MSS.0b013e31819dfe14

    Article  CAS  PubMed  Google Scholar 

  • Borsheim E, Knardahl S, Hostmark AT (1999) Short-term effects of exercise on plasma very low density lipoproteins (VLDL) and fatty acids. Med Sci Sports Exerc 31:522–530

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 98:1985–1990. doi:10.1152/japplphysiol.01095.2004

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM et al (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160. doi:10.1113/jphysiol.2007.142109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816–823. doi:10.1161/01.ATV.0000122852.22604.78

    Article  CAS  PubMed  Google Scholar 

  • Clegg M, Mc Clean C, Davison WG et al (2007) Exercise and postprandial lipaemia: effects on peripheral vascular function, oxidative stress and gastrointestinal transit. Lipids Health Dis 6:30. doi:10.1186/1476-511X-6-30

    Article  PubMed Central  PubMed  Google Scholar 

  • Cullinane E, Siconolfi S, Saritelli A, Thompson PD (1982) Acute decrease in serum triglycerides with exercise: is there a threshold for an exercise effect? Metabolism 31:844–847

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623. doi:10.1373/clinchem.2005.061408

    Article  CAS  PubMed  Google Scholar 

  • de Koning EJ, Rabelink TJ (2002) Endothelial function in the post-prandial state. Atheroscler Suppl 3:11–16

    Article  PubMed  Google Scholar 

  • Elosua R, Molina L, Fito M et al (2003) Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 167:327–334

    Article  CAS  PubMed  Google Scholar 

  • Fatouros IG, Jamurtas AZ, Villiotou V et al (2004) Oxidative stress responses in older men during endurance training and detraining. Med Sci Sports Exerc 36:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Fisher-Wellman K, Bloomer RJ (2009a) Macronutrient specific postprandial oxidative stress: relevance to the development of insulin resistance. Curr Diabetes Rev 5:228–238

    Article  CAS  PubMed  Google Scholar 

  • Fisher-Wellman K, Bloomer RJ (2009b) Acute exercise and oxidative stress: a 30 year history. Dyn Med 8:1. doi:10.1186/1476-5918-8-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Fisher-Wellman KH, Bloomer RJ (2010) Exacerbated postprandial oxidative stress induced by a lipid meal compared to isoenergetically administered carbohydrate, protein and mixed meals. Am J Clin Nutr 29:373–381

    CAS  Google Scholar 

  • Gibala MJ, Little JP, van Essen M et al (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575:901–911. doi:10.1113/jphysiol.2006.112094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill JM, Frayn KN, Wootton SA, Miller GJ, Hardman AE (2001) Effects of prior moderate exercise on exogenous and endogenous lipid metabolism and plasma factor VII activity. Clin Sci (Lond) 100:517–527

    Article  CAS  Google Scholar 

  • Grandjean PW, Crouse SF, Rohack JJ (2000) Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. J Appl Physiol 89:472–480

    CAS  PubMed  Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22S

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 102(Suppl 10):5–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hostmark AT, Ekeland GS, Beckstrom AC, Meen HD (2006) Postprandial light physical activity blunts the blood glucose increase. Prev Med 42:369–371. doi:10.1016/j.ypmed.2005.10.001

    Article  PubMed  Google Scholar 

  • Katsanos CS (2006) Prescribing aerobic exercise for the regulation of postprandial lipid metabolism : current research and recommendations. Sports Med 36:547–560

    Article  PubMed  Google Scholar 

  • Katsanos CS, Moffatt RJ (2004) Acute effects of premeal versus postmeal exercise on postprandial hypertriglyceridemia. Clin J Sport Med 14:33–39

    Article  PubMed  Google Scholar 

  • Katsanos CS, Grandjean PW, Moffatt RJ (2004) Effects of low and moderate exercise intensity on postprandial lipemia and postheparin plasma lipoprotein lipase activity in physically active men. J Appl Physiol 96:181–188. doi:10.1152/japplphysiol.00243.2003

    Article  PubMed  Google Scholar 

  • Koves TR, Ussher JR, Noland RC et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56. doi:10.1016/j.cmet.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  • Kraniou Y, Cameron-Smith D, Misso M, Collier G, Hargreaves M (2000) Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle. J Appl Physiol 88:794–796

    CAS  PubMed  Google Scholar 

  • Kraniou GN, Cameron-Smith D, Hargreaves M (2006) Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. J Appl Physiol 101:934–937. doi:10.1152/japplphysiol.01489.2005

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen S, Hargreaves M, Richter EA (1996) Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle. Am J Physiol 270:E197–E201

    CAS  PubMed  Google Scholar 

  • Kristiansen S, Hargreaves M, Richter EA (1997) Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise. Am J Physiol 272:E385–E389

    CAS  PubMed  Google Scholar 

  • Laaksonen DE, Atalay M, Niskanen L, Uusitupa M, Hanninen O, Sen CK (1999) Blood glutathione homeostasis as a determinant of resting and exercise-induced oxidative stress in young men. Redox Rep 4:53–59

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787

    Article  CAS  PubMed  Google Scholar 

  • Mc Clean CM, Mc Laughlin J, Burke G et al (2007) The effect of acute aerobic exercise on pulse wave velocity and oxidative stress following postprandial hypertriglyceridemia in healthy men. Eur J Appl Physiol 100:225–234. doi:10.1007/s00421-007-0422-y

    Article  CAS  PubMed  Google Scholar 

  • Melton CE, Tucker PS, Fisher-Wellman KH, Bloomer RJ (2009) Acute exercise does not attenuate postprandial oxidative stress in pre-diabetic women. Phys Sportsmed 36:1–10

    Google Scholar 

  • Michailidis Y, Jamurtas AZ, Nikolaidis MG et al (2007) Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc 39:1107–1113. doi:10.1249/01.mss.0b013e318053e7ba

    Article  CAS  PubMed  Google Scholar 

  • Miyashita M, Burns SF, Stensel DJ (2009) Acute effects of accumulating exercise on postprandial lipemia and C-reactive protein concentrations in young men. Int J Sport Nutr Exerc Metab 19:569–582

    CAS  PubMed  Google Scholar 

  • Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P (2000) Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 85:2970–2973

    Article  CAS  PubMed  Google Scholar 

  • Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P (2002) Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr 75:767–772

    CAS  PubMed  Google Scholar 

  • Nikolaidis MG, Jamurtas AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490(2):77–84

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe JH, Bell DS (2007) Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol 100:899–904. doi:10.1016/j.amjcard.2007.03.107

    Article  PubMed  Google Scholar 

  • Petridou A, Gerkos N, Kolifa M, Nikolaidis MG, Simos D, Mougios V (2004) Effect of exercise performed immediately before a meal of moderate fat content on postprandial lipaemia. Br J Nutr 91:683–687. doi:10.1079/BJN20041097

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer M, Wenk C, Colombani PC (2006) The influence of 30 minutes of light to moderate intensity cycling on postprandial lipemia. Eur J Cardiovasc Prev Rehabil 13:363–368

    PubMed  Google Scholar 

  • Pronk NP (1993) Short term effects of exercise on plasma lipids and lipoproteins in humans. Sports Med 16:431–448

    Article  CAS  PubMed  Google Scholar 

  • Quindry JC, Stone WL, King J, Broeder CE (2003) The effects of acute exercise on neutrophils and plasma oxidative stress. Med Sci Sports Exerc 35:1139–1145. doi:10.1249/01.MSS.0000074568.82597.0B

    Article  CAS  PubMed  Google Scholar 

  • Rodas G, Ventura JL, Cadefau JA, Cusso R, Parra J (2000) A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol 82:480–486

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Seip RL, Semenkovich CF (1998) Skeletal muscle lipoprotein lipase: molecular regulation and physiological effects in relation to exercise. Exerc Sport Sci Rev 26:191–218

    Article  CAS  PubMed  Google Scholar 

  • Seip RL, Mair K, Cole TG, Semenkovich CF (1997) Induction of human skeletal muscle lipoprotein lipase gene expression by short-term exercise is transient. Am J Physiol 272:E255–E261

    CAS  PubMed  Google Scholar 

  • Sies H, Stahl W, Sevanian A (2005) Nutritional, dietary and postprandial oxidative stress. J Nutr 135:969–972

    CAS  PubMed  Google Scholar 

  • Tabata I, Nishimura K, Kouzaki M et al (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • Thong FS, Derave W, Urso B, Kiens B, Richter EA (2003) Prior exercise increases basal and insulin-induced p38 mitogen-activated protein kinase phosphorylation in human skeletal muscle. J Appl Physiol 94:2337–2341. doi:10.1152/japplphysiol.00036.2003

    CAS  PubMed  Google Scholar 

  • Thorell A, Hirshman MF, Nygren J et al (1999) Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol 277:E733–E741

    CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi:10.1016/j.biocel.2006.07.001

    CAS  PubMed  Google Scholar 

  • van Oostrom AJ, Sijmonsma TP, Verseyden C et al (2003) Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res 44:576–583. doi:10.1194/jlr.M200419-JLR200

    Article  PubMed  Google Scholar 

  • Watson TA, Callister R, Taylor RD, Sibbritt DW, MacDonald-Wicks LK, Garg ML (2005) Antioxidant restriction and oxidative stress in short-duration exhaustive exercise. Med Sci Sports Exerc 37:63–71

    Article  CAS  PubMed  Google Scholar 

  • Weiss EP, Arif H, Villareal DT, Marzetti E, Holloszy JO (2008) Endothelial function after high-sugar-food ingestion improves with endurance exercise performed on the previous day. Am J Clin Nutr 88:51–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Witko-Sarsat V, Friedlander M, Capeillere-Blandin C et al (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313

    Article  CAS  PubMed  Google Scholar 

  • Zhang JQ, Thomas TR, Ball SD (1998) Effect of exercise timing on postprandial lipemia and HDL cholesterol subfractions. J Appl Physiol 85:1516–1522

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by The University of Memphis. No external funding was received to support the current investigation.

Conflict of interest

The authors declare no real or perceived conflicts of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Bloomer.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canale, R.E., Farney, T.M., McCarthy, C.G. et al. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress. Eur J Appl Physiol 114, 1913–1924 (2014). https://doi.org/10.1007/s00421-014-2912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2912-z

Keywords

Navigation