Skip to main content
Log in

Mobile charges in the cell membranes ofHalicystis parvula

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Charge-pulse experiments were performed on cells of the giant marine algaHalicystis parvula. At normal pH (8.2), the voltage decay following a charge-pulse of 500 ns duration fed to the vacuole could be described by summing two exponential relaxations. The amplitudes and time constants of these relaxations were widely separated. The parameters of the two relaxation processes were found to be pH-dependent. Reduction of the external pH value from pH 8.2 to 5 resulted in a complete change of the two relaxation processes within a few minutes. Only one relaxation process could be observed at pH 5, within the time resolution of our instrumentation. The experimental data could not be explained by a two-membrane model with reasonable values for the specific capacitances of tonoplast and plasmalemma. The results of the charge-pulse relaxations were found to be consistent with the assumption that both membranes have very similar electrical properties and that both contain mobile charges with a total surface concentration of about 30 nmol·m-2 and a translocation-rate constant of about 500·s-1. The mobile charges became neutralized at pH 5 hhich led to a decrease of the apparent specific capacitance of the algal cells. They are presumably either part of a transport system for cations or connected with the chloride pump ofHalicystis parvula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RC:

(R)esistance·(C)apacitance

References

  • Almers, W. (1978) Gating currents and charge movements in biological membranes. Rev. Physiol. Biochem. Pharmacol.82, 96–110

    Google Scholar 

  • Armstrong, C.M., Bezanilla, F. (1973) Current related to the movement of the gating particles of the sodium channels. Nature242, 459–461

    Google Scholar 

  • Bates, G.W., Goldsmith, M.H.M., Goldsmith, T.H. (1982) Separation of tonoplast and plasma membrane potential and resistance in cells of oat coleoptiles. J. Membr. Biol.66, 15–23

    Google Scholar 

  • Bentrup, F.-W., Gogarten-Boekels, M., Hoffmann, B., Gogarten, J.P., Baumann, C. (1986) ATP-dependent acidification and tonoplast hyperpolarization in isolated vacuoles from green suspension cells ofChenopodium rubrum L.. Proc. Natl. Acad. Sci. USA83, 2431–2433

    Google Scholar 

  • Benz, R., Conti, F. (1981) Structure of the squid axon membrane as derived from charge pulse relaxation studies in the presence of absorbed lipophilic ions. J. Membr. Biol.59, 91–104

    Google Scholar 

  • Benz, R., Janko, K. (1976) Voltage-induced capacitance relaxation of lipid bilayer membranes. Effect of membrane composition. Biochim. Biophys. Acta455, 721–738

    Google Scholar 

  • Benz, R., McLaughlin, S. (1983) The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanidep-trifluoromethoxyphenylhydrazone). Biophys. J.41, 381–398

    Google Scholar 

  • Benz, R., Zimmermann, U. (1983) Evidence for the presence of mobile charges in the cell membrane ofValonia utricularis. Biophys. J.43, 13–26

    Google Scholar 

  • Bertl, A., Felle, H., Bentrup, F.-W. (1984) Amine transport inRiccia fluitans: cytoplasmic and vacuolar pH recorded by pH-sensitive microelectrode. Plant Physiol.76, 75–78

    Google Scholar 

  • Büchner, K.-H., Rosenheck, K., Zimmermann, U. (1985) Characterization of mobile charges in the membrane ofValonia utricularis. J. Membr. Biol.88, 131–137

    Google Scholar 

  • Büchner, K.-H., Walter, L., Zimmermann, U. (1987) Influence of anesthetics on the movement of the mobile charges in the algal cell membranes ofValonia utricularis. Biochim. Biophys. Acta903, 241–247

    Google Scholar 

  • Chandler, W.K., Schneider, M.F., Rakowski, R.F., Adrian, R.H. (1975) Charge movements in skeletal muscle. Philos. Trans. R. Soc. London Ser. B.270, 501–505

    Google Scholar 

  • Cole, K.S. (1968) Membranes, ions and impulses. University of California Press, Berkeley

    Google Scholar 

  • Dainty, J. (1976) Water relations in plant cells. In: Encyclopedia of plant physiology, N.S. vol. 2A: Transports in plants II, pp. 12–35, Lüttge, U., Pitman M.G., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Davis, R.F. (1981) Electrical properties of the plasmalemma and tonoplast inValonia ventricosa. Plant Physiol.67, 825–831

    Google Scholar 

  • Felle, H. (1980) Amine transport at the plasma membrane ofRiccia fluitans. Biochim. Biophys. Acta602, 181–195

    Google Scholar 

  • Felle, H., Bentrup, F.W. (1977) A study of the primary effect of the uncoupler CCCP on membrane potential and conductance inRiccia fluitans. Biochim. Biophys. Acta464, 179–187

    Google Scholar 

  • Fernandez, J.M., Taylor, R.E., Bezanilla, F. (1983) Induced capacitance in the squid giant axon. J. Gen. Physiol.82, 331–346

    Google Scholar 

  • Findlay, G.P., Hope, A.B. (1976) Electrical properties of plant cells: methods and findings. In: Encyclopedia of plant physiology, N.S., vol. 2A: Transports in plansts II, pp. 53–92 Lüttge, U., Pitman, M.G., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gradmann, D. (1975) Analog circuit of theAcetabularia membrane. J. Membr. Biol.25, 183–208

    Google Scholar 

  • Gradmann, D. (1978) Green light (550 nm) inhibits electrogenic Cl-pump in theAcetabularia membrane by permeability increase for the carrier ion. J. Membr. Biol.44, 1–24

    Google Scholar 

  • Gradmann, D., Hansen, U.-P., Slayman, C.L. (1982) Reaction kinetic analysis of current-voltage relationships for electrogenic pumps inNeurospora andAcetabularia. Curr. Top. Membr. Transp.16, 257–276

    Google Scholar 

  • Graves, J.S., Gutknecht, J. (1976) Ion transport studies and determination of the cell wall elastic modulus in the marine algaHalicystis parvula. J. Gen. Physiol.67, 579–592

    Google Scholar 

  • Graves, J.S., Gutknecht, J. (1977a) Chloride transport and the membrane potential in the marine alga,Halicystis parvula. J. Membr. Biol.36, 65–81

    Google Scholar 

  • Graves, J.S., Gutknecht, J. (1977b) Current-voltage relationships and voltage sensitivity of the Cl-pump inHalicystis parvula. J. Membr. Biol.36, 83–91

    Google Scholar 

  • Gutknecht, J. (1968) Salt transport inValonia: Inhibition of potassium uptake by small hydrostatic pressures. Science160, 68–70

    Google Scholar 

  • Gutknecht, J., Hastings, D.F., Bisson, M.A. (1978) Ion transport and turgor regulation in giant algal cells. In: Membrane transport in biology III, pp. 125–174, Giebisch G., Tosteson, D.C., Ussing, H.H., eds. Springer Berlin Heidelberg New York

    Google Scholar 

  • Hedrich, R., Flügge, U.I., Fernandez, J.M. (1986) Patch-clamp studies of ion transport in isolated plant vacuoles. FEBS Lett204, 228–232

    Google Scholar 

  • Heinz, E., Geck, P. (1974) The efficiency of energetic coupling between Na+ flow and amino acid transport in Ehrlich cells — a revised assessment. Biochim. Biophys. Acta339, 426–431

    Google Scholar 

  • Hellebust, J.A. (1976) Osmoregulation. Annu. Rev. Plant Physiol.27, 485–505

    Google Scholar 

  • Kaplan, J.H. (1985) Ion movement through the sodium pump. Annu. Rev. Physiol.47, 535–544

    Google Scholar 

  • Kauss, H. (1977) Biochemistry of osmoregulation. Int. Rev. Biochem.13, 119–140

    Google Scholar 

  • Kimmich, G.A. (1980) Gradient coupling in intestinal cells. Fed. Proc. Fed. Am. Soc. Exp. Biol.40, 2474–2479

    Google Scholar 

  • Komor, E., Tanner, W. (1976) The determination of the membrane potential ofChlorella vulgaris. Evidence for electrogenic sugar transport. Eur. J. Biochem.70, 197–204

    Google Scholar 

  • Lainson, R., Field, C.P. (1976) Electrical properties ofValonia ventricosa. J. Membr. Biol.29, 81–94

    Google Scholar 

  • Okada, Y., Tsuchiya, W., Irimaijri, A., Inouye, A. (1977) Electrical properties and active solute transport in rat small intestine: I. Potential profile changes associated with sugar and amino acid transports. J. Membr. Biol.31, 205–219

    Google Scholar 

  • Pauly, H. (1962) Electrical properties of the cytoplasmic membrane and the cytoplasm of bacteria and of protoplasts.IEEE (Inst. Electr.-Electron. Eng.) Trans. Biomed. Eng. BME9, 93–95

    Google Scholar 

  • Pethig, R. (1979) Dielectric and electronic properties of biological materials. John Wiley & Sons, New York

    Google Scholar 

  • Preston, R.D. (1974) The physical biology of plant cell walls. Chapman and Hall, London

    Google Scholar 

  • Shimmen, T., Tazawa, M. (1980) Dependence of H+ efflux on ATP in cells ofChara australis. Plant Cell Physiol.21 1007–1013

    Google Scholar 

  • Slayman, C.L., Slayman, C.W. (1974) Depolarization of the plasma membrane ofNeurospora during active transport of glucose: Evidence for a proton dependent cotransport system. Proc. Natl. Acad. Sci. USA71, 1935–1939

    Google Scholar 

  • Tittor, J., Hansen, U.-P., Gradmann, D. (1983) Impedance of the electrogenic Cl-pump inAcetabularia: electrical frequency entrainements, voltage-sensitivity, and reaction kinetic interpretation. J. Membr. Biol.75, 129–139

    Google Scholar 

  • Zimmermann, U. (1978) Physics of turgor-and osmoregulation. Annu. Rev. Plant Physiol.29, 121–148

    Google Scholar 

  • Zimmermann, U., Beckers, F., Coster, H.G.L. (1977) The effect of pressure on the electrical breakdown in the membrane ofValonia utricularis. Biochim. Biophys. Acta464, 399–416

    Google Scholar 

  • Zimmermann, U., Benz, R. (1980) Depedence of the electrical breakdown voltage on the charging time inValonia utricularis. J. Membr. Biol.53, 33–43

    Google Scholar 

  • Zimmermann, U., Benz, R., Koch, H. (1981) A new electrical method for the determination of the cell membrane area in plant cells. Planta152, 352–355

    Google Scholar 

  • Zimmermann, U., Büchner, K.-H., Benz, R. (1982) Transport properties of mobile charges in algal membranes: influence of pH and turgor pressure. J. Membr. Biol.67, 183–197

    Google Scholar 

  • Zimmermann, U., Hüsken, D. (1980) Turgor pressure and cell volume relaxation inHalicystis parvula. J. Membr. Biol.56, 55–64

    Google Scholar 

  • Zimmermann, U., Steudle, E. (1974) The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation inValonia utricularis. J. Membr. Biol.16, 331–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benz, R., Büchner, KH. & Zimmermann, U. Mobile charges in the cell membranes ofHalicystis parvula . Planta 174, 479–487 (1988). https://doi.org/10.1007/BF00634476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00634476

Key words

Navigation