Skip to main content
Log in

Bounds and exact theories for the transport properties of inhomogeneous media

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the bounds of Milton on the transport coefficient of a two-component composite, in their application to the square and hexagonal arrays of cylinders, and the three cubic lattices of spheres. We show that, in all five cases, as more information is supplied about the geometry of the composite, the bounds converge to the precise point obtained from an exact theory specific to the geometry in question. We illustrate the use of the bounds in determining whether a set of known values of the transport coefficient adequately specifies the general behaviour of that quantity. We determine the values of two structure-dependent parameters for cell materials with spheroidal cells and the value of one parameter for hexagonal and square arrays of cylinders with missing array elements. These parameters determine bounds both on the transport and on the elastic properties of the respective materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J.Sievers: InSolar Energy Conversion-Solid-State Physics Aspects, ed. by B.O.Seraphin, Topics Appl. Phys.30 (Springer, Berlin, Heidelberg, New York (1979) pp. 57–114

    Google Scholar 

  2. D.K.Hale: J. Mater. Sci.11, 2105–2141 (1976)

    Google Scholar 

  3. J.P.Watt, G.F.Davies, R.J.O'Connell: Rev. Geophys.14, 541–563 (1976)

    Google Scholar 

  4. G.K.Batchelor: Annu. Rev. Fluid Mech.6, 227–255 (1974)

    Google Scholar 

  5. Electrical Transport and Optical Properties of Inhomogeneous Media, ed. by J.C.Garland and D.B.Tanner (American Institute of Physics, New York, 1978) pp. 2–416

    Google Scholar 

  6. Z.Hashin: InMechanics of Composite Materials, ed. by F.W.Wendt, H.Liebowitz and N.Perrone (Pergamon Press, New York, 1970) pp. 201–242

    Google Scholar 

  7. Z.Hashin, S.Shtrikman: J. Appl. Phys.33, 3125–3131 (1962)

    Google Scholar 

  8. Z.Hashin, S.Shtrikman: J. Mech. Phys. Solids11, 127–140 (1963)

    Google Scholar 

  9. M.Beran: Nuovo Cimento38, 771–782 (1965)

    Google Scholar 

  10. M.Beran, J.Molyneux: Q. Appl. Math.24, 107–118 (1966)

    Google Scholar 

  11. J.J.McCoy: Recent Adv. Eng. Sci.5, 235–254 (1970)

    Google Scholar 

  12. D.J.Bergman: Phys. Rep.43, 377–407 (1978)

    Google Scholar 

  13. D.J.Bergman: Phys. Rev. Lett.44, 1285–1287 (1980)

    Google Scholar 

  14. D.J.Bergman: Phys. Rev. B,23, 3058–3065 (1981)

    Google Scholar 

  15. D.J. Bergman: Appl. Phys. Lett. (submitted)

  16. G.W.Milton: Appl. Phys. Lett.37, 300–302 (1980)

    Google Scholar 

  17. G.W.Milton: J. Appl. Phys.52, 5286–5293 (1981)

    Google Scholar 

  18. G.W.Milton: Phys. Rev. Lett.46, 542–545 (1981)

    Google Scholar 

  19. G.W. Milton: J. Mech. Phys. Solids (submitted)

  20. W.T.Doyle: J. Appl. Phys.49, 795–797 (1978)

    Google Scholar 

  21. R.C.McPhedran, D.R.McKenzie: Proc. R. Soc. (London) A359, 45–63 (1978)

    Google Scholar 

  22. D.R.McKenzie, R.C.McPhedran, G.H.Derrick: Proc. R. Soc. (London) A362, 211–232 (1978)

    Google Scholar 

  23. W.T.Perrins, D.R.McKenzie, R.C.McPhedran: Thin Solid Films57, 321–326 (1979)

    Google Scholar 

  24. W.T.Perrins, D.R.McKenzie, R.C.McPhedran: Proc. R. Soc. (London) A369, 207–225 (1979)

    Google Scholar 

  25. G.W.Milton, R.C.McPhedran, D.R.McKenzie: Appl. Phys.25, 23–30 (1981)

    Google Scholar 

  26. Lord Rayleigh: Philos. Mag.34, 481–502 (1892)

    Google Scholar 

  27. D.J.Bergman: J. Phys. C12, 4947–4960 (1979)

    Google Scholar 

  28. R.C.McPhedran, D.R.McKenzie: Appl. Phys.23, 223–235 (1980)

    Google Scholar 

  29. M.N.Miller: J. Math. Phys.10, 1988–2004 (1969)

    Google Scholar 

  30. M.N.Miller: J. Math. Phys.10, 2005–2013 (1969)

    Google Scholar 

  31. J.B.Keller: J. Appl. Phys.34, 991–993 (1963)

    Google Scholar 

  32. J.B.Keller: J. Math. Phys.5, 548–549 (1964)

    Google Scholar 

  33. American Institute of Physics Handbook (McGraw-Hill, New York, 1972) pp. 6-133–6-134

  34. N.Silnutzer: Ph.D. Thesis, University of Pennsylvania, Philadelphia (1972)

    Google Scholar 

  35. T.Wu: Int. J. Solids Struct.2, 1–8 (1966)

    Google Scholar 

  36. M.Hori, F.Yonezawa: J. Phys. C10, 229–248 (1977)

    Google Scholar 

  37. E.C.Stoner: Philos. Mag.36, 803–821 (1945)

    Google Scholar 

  38. P.B.Corson: J. Appl. Phys.45, 3159–3182 (1974)

    Google Scholar 

  39. R.C.McPhedran, W.T.Perrins: Appl. Phys.24, 311–318 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McPhedran, R.C., Milton, G.W. Bounds and exact theories for the transport properties of inhomogeneous media. Appl. Phys. A 26, 207–220 (1981). https://doi.org/10.1007/BF00617840

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617840

PACS

Navigation