Skip to main content
Log in

Lipschitz estimates and existence of correctors for nonlinearly elastic, periodic composites subject to small strains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider periodic homogenization of nonlinearly elastic composite materials. Under suitable assumptions on the stored energy function (frame indifference; minimality, non-degeneracy and smoothness at identity; \(p\ge d\)-growth from below), and on the microgeometry of the composite (covering the case of smooth, periodically distributed inclusions with touching boundaries), we prove that in an open neighborhood of the set of rotations, the multi-cell homogenization formula of non-convex homogenization reduces to a single-cell formula that can be represented with help of a corrector. This generalizes a recent result of the authors by significantly relaxing the spatial regularity assumptions on the stored energy function. As an application, we consider the nonlinear elasticity problem for \(\varepsilon \)-periodic composites, and prove that minimizers (subject to small loading and well-prepared boundary data) satisfy a Lipschitz estimate that is uniform in \(0<\varepsilon \ll 1\). A key ingredient of our analysis is a new Lipschitz estimate (under a smallness condition) for monotone systems with spatially piecewise-constant coefficients. The estimate only depends on the geometry of the coefficient’s discontinuity-interfaces, but not on the distance between these interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avellaneda, M., Lin, F.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40, 803–847 (1987)

    Article  MathSciNet  Google Scholar 

  2. Avellaneda, M., Lin, F.: \(L^p\) bounds on singular integrals in homogenization. Commun. Pure Appl. Math. 44, 897–910 (1991)

    Article  Google Scholar 

  3. Armstrong, S., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219, 255–348 (2016)

    Article  MathSciNet  Google Scholar 

  4. Armstrong, S., Smart, C.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. 49, 423–481 (2016)

    Article  MathSciNet  Google Scholar 

  5. Armstrong, S., Shen, Z.: Lipschitz estimates in almost-periodic homogenization. Commun. Pure Appl. Math. 69, 1882–1923 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  Google Scholar 

  7. Ball, J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics and Dynamics, pp. 3–59. Springer, Berlin (2002)

    Chapter  Google Scholar 

  8. Braides, A.: Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL Mem. Mat. 9, 313–321 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59, 703–766 (2017)

    Article  MathSciNet  Google Scholar 

  10. Byun, S.S., Kim, Y.: Elliptic equations with measurable nonlinearities in nonsmooth domains. Adv. Math. 288, 152–200 (2016)

    Article  MathSciNet  Google Scholar 

  11. Byun, S.S., Kim, Y.: Riesz potential estimates for parabolic equations with measurable nonlinearities. Int. Math. Res. Not. (2017). https://doi.org/10.1093/imrn/rnx080

    Article  MathSciNet  Google Scholar 

  12. Byun, S.S., Ryu, S., Wang, L.: Gradient estimates for elliptic systems with measurable coefficients in nonsmooth domains. Manuscr. Math. 133, 225–245 (2010)

    Article  MathSciNet  Google Scholar 

  13. Cardone, G., Pasthukova, S.E., Zhikov, V.V.: Some estimates for non-linear homogenization. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29, 101–110 (2005)

    MathSciNet  Google Scholar 

  14. Chipot, M., Kinderlehrer, D., Vergara-Caffarelli, G.: Smoothness of linear laminates. Arch. Ration. Mech. Anal. 96, 81–96 (1986)

    Article  MathSciNet  Google Scholar 

  15. Conti, S., Dolzmann, G., Kirchheim, B., Müller, S.: Sufficient conditions for the validity of the Cauchy–Born rule close to \(\text{ SO }(n)\). J. Eur. Math. Soc. 8, 515–530 (2006)

    Article  MathSciNet  Google Scholar 

  16. Friesecke, G., Theil, F.: Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12, 445–478 (2002)

    Article  MathSciNet  Google Scholar 

  17. Geymonat, G., Müller, S., Triantafyllidis, N.: Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Ration. Mech. Anal. 122, 231–290 (1993)

    Article  Google Scholar 

  18. Giaquinta, M., Martinazzi, L.: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 2nd edn. Scuola Normale Superiore Pisa, Pisa (2012)

    Book  Google Scholar 

  19. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies 105. Princeton University Press, Princeton (1983)

    Google Scholar 

  20. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge (2003)

    Book  Google Scholar 

  21. Gloria, A., Neukamm, S.: Commutability of homogenization and linearization at the identity in finite elasticity and applications. Ann. Inst. H. Poincaré Anal. Non Lineaire 28, 941–964 (2011)

    Article  MathSciNet  Google Scholar 

  22. Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators. arxiv:1409.2678

  23. Kenig, C., Lin, F., Shen, Z.: Homogenization of elliptic systems with Neumann boundary conditions. J. Am. Math. Soc. 26, 901–937 (2013)

    Article  MathSciNet  Google Scholar 

  24. Kristensen, J., Melcher, C.: Regularity in oscillatory nonlinear elliptic systems. Math. Z. 260, 813–847 (2008)

    Article  MathSciNet  Google Scholar 

  25. Kuusi, T., Mingione, G.: Universal potential estimates. J. Funct. Anal. 262, 4205–4269 (2012)

    Article  MathSciNet  Google Scholar 

  26. Li, Y.Y., Nirenberg, L.: Estimates for elliptic systems from composite material. Commun. Pure Appl. Math. 56, 892–925 (2003)

    Article  MathSciNet  Google Scholar 

  27. Li, Y.Y., Vogelius, M.: Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153, 91–151 (2000)

    Article  MathSciNet  Google Scholar 

  28. Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51, 355–426 (2006)

    Article  MathSciNet  Google Scholar 

  29. Müller, S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99, 189–212 (1987)

    Article  MathSciNet  Google Scholar 

  30. Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Mathematics 1713, pp. 85–210. Springer, Berlin (1999)

    Google Scholar 

  31. Müller, S., Neukamm, S.: On the commutability of homogenization and linearization in finite elasticity. Arch. Ration. Mech. Anal. 201, 465–500 (2011)

    Article  MathSciNet  Google Scholar 

  32. Neukamm, S., Schäffner, M.: Quantitative homogenization in nonlinear elasticity for small loads. Arch. Ration. Mech. Anal. 230(1), 343–396 (2018)

    Article  MathSciNet  Google Scholar 

  33. Shen, Z.: Lectures on Periodic Homogenization of Elliptic Systems. arxiv:1710.11257

  34. Sverák, V., Yan, X.: Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA 99, 15269–15276 (2002)

    Article  MathSciNet  Google Scholar 

  35. Zhang, K.: Energy minimizers in nonlinear elastostatics and the implicit function theorem. Arch. Ration. Mech. Anal. 114, 95–117 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project No. 405009441, and in the context of TU Dresden’s Institutional Strategy “The Synergetic University”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Schäffner.

Additional information

Communicated by J. Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A: Appendix

A: Appendix

1.1 A.1: Proof of Lemma 6

Proof of Lemma 6

We present the proof only in the case \(R=1\), the statement for arbitrary \(R>0\) follows by scaling.

Step 1. For all \(k\in \mathbb {N}\) there exists \(c=c(\beta ,k)<\infty \) such that

$$\begin{aligned} \sum _{\ell =0}^k\Vert {\nabla '}^\ell \nabla u\Vert _{L^2(B_\frac{1}{2})}\le c\Vert \nabla u\Vert _{L^2(B_1)}. \end{aligned}$$
(147)

Indeed, this is routine and follows by differentiating the equation via difference quotients.

Step 2. As in Proposition 1, we set \(J_d(u):=({\mathbb {L}}\nabla u)e_d\). Inequality (147) yields corresponding estimates for the derivatives of \(J_d(u)\) in \(x'\)-direction: For every \(k\in \mathbb {N}\) there exists \(c=c(\beta ,d,k)<\infty \) such that

$$\begin{aligned} \sum _{\ell =0}^{k}\Vert {\nabla '}^\ell J_d(u)\Vert _{L^2(B_{\frac{1}{2}})}\le c \Vert \nabla u\Vert _{L^2(B_1)}. \end{aligned}$$

In order to obtain suitable estimates for \(\partial _d J_d(u)\), we use equation (55) in the form of \(\partial _d J_d(u)=-\sum _{j=1}^{d-1} \partial _j({\mathbb {L}}\nabla u)e_j\). Hence, we find for every \(k\in \mathbb {N}\) a constant \(c=c(\beta ,d,k)<\infty \) such that

$$\begin{aligned} \sum _{\ell =0}^k\Vert {\nabla '}^\ell \partial _d J_d(u)\Vert _{L^2(B_{\frac{1}{2}})}\le c \Vert \nabla u\Vert _{L^2(B_1)}. \end{aligned}$$

Step 3. We claim that there exists \(c=c(\beta ,d)<\infty \) such that

$$\begin{aligned} \Vert \nabla u\Vert _{L^\infty (B_\frac{1}{2})}\le c\Vert \nabla u\Vert _{L^2(B_1)}. \end{aligned}$$

The following anisotropic Sobolev inequality can be found in [26, Lemma 2.2]: Suppose that \({\nabla '}^\ell f\in L^2(B_1)\) and \({\nabla '}^\ell \partial _d f\in L^2(B_1)\) for all \(\ell =0,\dots ,K\) with \(\frac{d-1}{2}<K\). Then \(f\in C^0(B_1)\) and

$$\begin{aligned} \Vert f\Vert _{L^\infty (B_1)}\le C(d)\sum _{\ell =0}^{K}\left( \Vert {\nabla '}^\ell \partial _d f\Vert _{L^2(B_1)}+\Vert {\nabla '}^\ell f\Vert _{L^2(B_1)}\right) . \end{aligned}$$
(148)

By Step 1 and 2, we can apply (148) to \({\nabla '}u\) and \(J_d(u)\) and obtain that there exists \(c=c(\beta ,d)<\infty \) such that

$$\begin{aligned} \Vert {\nabla '}u\Vert _{L^\infty (B_{\frac{1}{2}})}+\Vert J_d(u)\Vert _{L^\infty (B_\frac{1}{2})}\le&c\Vert \nabla u\Vert _{L^2(B_1)}. \end{aligned}$$

Finally, the \(L^\infty \) estimate for \(\partial _d u\) follows from Lemma 4 (with \(\mathbf{{a}}(F):={\mathbb {L}}F\)). \(\square \)

1.2 A.2: Proof of Lemma 2

As already mentioned, Lemma 2 is completely standard and well-known, see e.g., [13]. We only provide an argument for the continuity of \(D\mathbf{{a}}\) claimed in the second bullet point.

Proof

Throughout the proof we write \(\lesssim \) if \(\le \) holds up to a multiplicative constant depending only on \(\beta \) and d.

Let us first recall that \(\mathbf{{a}}_0\in C^1(\mathbb {R}^{d\times d},\mathbb {R}^{d\times d})\) and for every \(F,G\in \mathbb {R}^{d\times d}\) it holds

$$\begin{aligned} D\mathbf{{a}}_0(F)[G]:=\int _{Q_1}{\mathbb {L}}_F(G+\nabla \psi _G(x,F))\,dx \end{aligned}$$

where \({\mathbb {L}}_F\in L^\infty (\mathbb {R}^d,\mathbb {R}^{d^4})\) denotes the fourth order tensor satisfying

$$\begin{aligned} {\mathbb {L}}_F(x)G=D\mathbf{{a}}(x,F+\nabla \phi (x,F))[G]\qquad \hbox {for every } G\in \mathbb {R}^{d\times d}\hbox { and a.e.}~x\in \mathbb {R}^d, \end{aligned}$$

and \(\psi _G(F)\in H_{{\text {per}}}^1(Q_1)\) is uniquely given by

$$\begin{aligned} {\text {div}}\, {\mathbb {L}}_F(G+\nabla \psi _G(F))=0\quad \hbox {in } {\mathscr {D}}'(\mathbb {R}^d),\qquad (\psi _G(F))_{Q_1}=0. \end{aligned}$$
(149)

The prove of this result can easily deduced from [17, Theorem 5.4] see also [32] (in particular proof of Lemma 3).

Step 1. We claim that there exists \(c=c(\beta ,d),q=q(\beta ,d)\in [1,\infty )\) such that for all \(F_1,F_2,G\in \mathbb {R}^{d\times d}\) with \(|G|=1\) it holds

$$\begin{aligned} \Vert \nabla \psi _G(F_1)-\nabla \psi _G(F_2)\Vert _{L^2(Q_1)}\le c\omega (c|F_1-F_2|)^\frac{1}{q}. \end{aligned}$$
(150)

Substep 1.1. We claim

$$\begin{aligned} \Vert {\mathbb {L}}_{F_2} - {\mathbb {L}}_{F_2}\Vert _{L^1(Q_1)}\lesssim \omega ((1+c)|F_1-F_2|), \end{aligned}$$
(151)

where \(c=c(\beta )<\infty \) denotes the constant in (24). Indeed, by (18) and concavity of \(\omega \), we obtain

$$\begin{aligned} \Vert {\mathbb {L}}_{F_2} - {\mathbb {L}}_{F_1}\Vert _{L^1(Q_1)}\lesssim&\Vert \omega (|F_1+\nabla \phi (F_1)-(F_2+\nabla \phi (F_2))|)\Vert _{L^1(Q_1)}\\ \le&\omega \left( \Vert F_1+\nabla \phi (F_1)-(F_2+\nabla \phi (F_2))\Vert _{L^1(Q_1)}\right) \end{aligned}$$

and the claim follows by Hölder’s inequality and (24).

Substep 1.2. Conclusion. Equation (149) and Meyers estimate imply that there exists \(\mu =\mu (\beta ,d)>0\) such that

$$\begin{aligned} \Vert \psi _G(F)\Vert _{W^{1,2+\mu }(Q_1)}\lesssim |G|=1. \end{aligned}$$
(152)

A combination of (149) and (151) yields

$$\begin{aligned}&\Vert \nabla \psi _G(F_1)-\nabla \psi _G(F_2)\Vert _{L^2(Q_1)}^2\\&\quad \lesssim \int _{Q_1}\langle {\mathbb {L}}_{F_1}(x)(\nabla \psi _G(F_1)- \nabla \psi _G(F_2)),\nabla \psi _G(F_1)- \nabla \psi _G(F_2)\rangle \,dx\\&\quad =\int _{Q_1}\langle ({\mathbb {L}}_{F_2}(x)-{\mathbb {L}}_{F_1}(x))(G+\nabla \psi _G(F_2)),\nabla \psi _G(F_1)- \nabla \psi _G(F_2)\rangle \,dx\\&\quad \le \Vert {\mathbb {L}}_{F_1}-{\mathbb {L}}_{F_2}\Vert _{L^\frac{2(2+\mu )}{\mu }(Q_1)}\Vert G+\nabla \psi _G(F_2)\Vert _{L^{2+\mu }(Q_1)}\Vert \nabla \psi _G(F_1)-\nabla \psi _G(F_2)\Vert _{L^2(Q_1)}. \end{aligned}$$

The claim (150) (with \(q=\frac{2(2+\mu )}{\mu }\)) follows by Hölders inequality, (151) and (152).

Step 2. Conclusion. Let \(F_1,F_2,G\in \mathbb {R}^{d\times d}\) with \(|G|=1\) be given. Then, (150) and (151) yield

which proves the claim. \(\square \)

1.3 A.3: Meyers estimate

In Lemma 8 and Proposition 3, we use a global version of Meyers estimate. For convenience of the reader, we here give a short proof of this well-known result. The key ingredient is the following classic higher integrability result

Theorem 6

([20] Theorem 6.6) Let \(K>0\), \(m\in (0,1)\), \(s>1\) and \(B=B_R(x_0)\) for some \(x_0\in \mathbb {R}^d\) and \(R>0\) be given. Suppose that \(f\in L^1(B)\) and \(g\in L^s(B)\) are such that for every \(z\in \mathbb {R}^d\) and \(r>0\) with \(B_r(z)\subset B\) it holds

$$\begin{aligned} \Vert f\Vert _{\underline{L}^1(B_\frac{r}{2}(z))}\le K\left( \Vert f\Vert _{\underline{L}^m(B_r(z))}+\Vert g\Vert _{\underline{L}^1(B_r(z))}\right) . \end{aligned}$$

Then there exist \(q=q(K,m,s)\in (1,s]\) and \(c=c(K,m,s)\in [1,\infty )\) such that \(f\in L^q(\frac{1}{2} B)\) and it holds

$$\begin{aligned} \Vert f\Vert _{\underline{L}^q(\frac{1}{2} B)}\le c \left( \Vert f\Vert _{\underline{L}^1(B)}+\Vert g\Vert _{\underline{L}^q(B)}\right) . \end{aligned}$$

Next, we state a well-known global version of Meyer’s estimate.

Lemma 10

Fix \(d\ge 2\), \(\beta \in (0,1]\) and let \(\mathbf{{a}}\) be a coefficient field of class \({\mathcal {A}}_\beta \). Then, for every \(p>2\) there exists \(p_0=p_0(\beta ,d,p)\in (2,p]\) and \(c=c(\beta ,d,p)\in [1,\infty )\) such that if \(u\in H_0^1(B)\) and \(g\in L^p(B)\), where B denotes either a ball or a cube, satisfy

$$\begin{aligned} {\text {div}}\, \mathbf{{a}}(\nabla u)={\text {div}}\, g\qquad \hbox {in }{\mathscr {D}}'(B), \end{aligned}$$

then

$$\begin{aligned} \Vert \nabla u\Vert _{\underline{L}^{p_0} (B)}\le c \Vert g\Vert _{\underline{L}^{p_0} (B)}. \end{aligned}$$

Proof

Without loss of generality, we consider \(B=B_1(0)\), the general case follows by scaling and translation. Throughout the proof, we write \(\lesssim \) if \(\le \) holds up to a multiplicative constant depending on \(\beta \) and d.

We show that for every \(z\in \mathbb {R}^d\) and \(r>0\) it holds

$$\begin{aligned} \Vert \nabla u\Vert _{\underline{L}^2(B_\frac{r}{2}(z))}\lesssim \Vert \nabla u\Vert _{\underline{L}^{\frac{2d}{d+2}}(B_r(z))}+\Vert g\Vert _{\underline{L}^2(B_r(z))}, \end{aligned}$$
(153)

where we extend u and g by zero on \(\mathbb {R}^d\setminus B\). The claim follows by applying Theorem 6.

Following [3, Proposition B.6], we distinguish between the cases \(B_r(z)\subset B\) and \(B_r(z)\setminus B\ne \emptyset \). Suppose that \(B_r(z)\subset B\). Then, a combination of the Caccioppoli inequality and the Sobolev inequality yields

$$\begin{aligned} \Vert \nabla u\Vert _{\underline{L}^2(B_\frac{r}{2}(z))}\lesssim&r^{-1}\Vert u-(u)_{B_r(z)}\Vert _{\underline{L}^2(B_r(z))}+\Vert g\Vert _{\underline{L}^2(B_r(z))}\nonumber \\ \lesssim&\Vert \nabla u\Vert _{\underline{L}^{\frac{2d}{d+2}}(B_r(z))}+\Vert g\Vert _{\underline{L}^2(B_r(z))}. \end{aligned}$$
(154)

Next, we suppose that \(B_r(z)\setminus B\ne \emptyset \). We easily obtain the following Caccioppoli inequality

$$\begin{aligned} \Vert \nabla u\Vert _{\underline{L}^2(B_\frac{r}{2}(z))}\lesssim r^{-1}\Vert u\Vert _{\underline{L}^2(B_{r}(z))}+\Vert g\Vert _{\underline{L}^2(B_{r}(z))}. \end{aligned}$$

Clearly, we find \(c=c(d)>0\) such that

$$\begin{aligned} |B_{2r}(z)\setminus B|\ge c|B_{2r}(z)|. \end{aligned}$$

Hence, we can apply a version of Poincaré inequality (see e.g., [20, Theorem 3.16]) to obtain

$$\begin{aligned} \Vert \nabla u\Vert _{\underline{L}^2(B_\frac{r}{2}(z))}\lesssim&r^{-1}\Vert u\Vert _{\underline{L}^2(B_{2r}(z))}+\Vert g\Vert _{\underline{L}^2(B_{2r}(z))}\nonumber \\ \lesssim&\Vert \nabla u\Vert _{\underline{L}^{\frac{2d}{d+2}}(B_{2r}(z)}+\Vert g\Vert _{\underline{L}^2(B_{2r}(z)}. \end{aligned}$$
(155)

Clearly, (154), (155) and a simple covering argument imply (153) which finishes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neukamm, S., Schäffner, M. Lipschitz estimates and existence of correctors for nonlinearly elastic, periodic composites subject to small strains. Calc. Var. 58, 46 (2019). https://doi.org/10.1007/s00526-019-1495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1495-2

Mathematics Subject Classification

Navigation