Skip to main content
Log in

UV vision: a bird's eye view of feathers

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The spectral reflectance of feathers was measured in the range between 310 and 730 nm by means of a diode array spectrometer. In many feathers an ultraviolet (UV) reflection adds to the reflection in the visible range which causes their coloration as seen by man. The UV reflectance is related to the presence of pigments in feathers and to the arrangement of structures which influence the light reflecting properties. Feathers giving strong UV reflection are called type A, without UV reflection type B, and giving weak to medium UV reflection type A/B. On the assumption that birds are tetrachromates, colour vision in birds and their possible chromaticity diagrams are discussed. If red, green, blue and UV are primary colours, three secondary colours are present in the daylight spectrum: yellow, blue-green, and violet-ultraviolet. Three more secondary hues may originate from mixing spectral lights: purple (red and violet), ‘bird's purple’ (red and UV), and ‘green purple’ (green and UV). Some feathers with double-banded reflectance curves will produce hues which are not present in the daylight spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowmaker JK (in press) Avian colour vision and the environment. In: Proceedings of the 19th International Ornithological Congress, Ottawa

  • Burkhardt D (1982) Birds, berries and UV. A note on some consequences of UV vision in birds. Naturwissenschaften 69:153–157

    Google Scholar 

  • Burkhardt D (1983) Wavelength perception and colour vision. In: Cosens DJ, Vince-Price D (eds) The biology of photoreception. Cambridge University Press, Cambridge, pp 371–397 (Society for Experimental Biology Symposia 36)

    Google Scholar 

  • Burkhardt D (1988) Die Welt mit anderen Augen. Wie Insekten und Vögel die Welt und ihre Farben sehen. Aus Forschung und Medizin, Schering AG Berlin

  • Burkhardt D, Maier E (1989) The spectral sensitivity of a passerine bird is highest in the UV. Naturwissenschaften 76:82–83

    Google Scholar 

  • Burrt EH jr (1986) An analysis of physical, and optical aspects of avian coloration with emphasis on wood-warblers. American Ornithologists Union, Washington DC, pp 1–126 (Ornithological Monographs no 38)

    Google Scholar 

  • Chen D-M, Goldsmith TH (1986) Four spectral classes of cone in the retinas of birds. J Comp Physiol A 159:473–479

    Google Scholar 

  • Chen D-M, Collins JS, Goldsmith TH (1984) The ultraviolet receptor of bird retinas. Science 225:337–340

    Google Scholar 

  • Daumer K (1958) Blumenfarben, wie sie die Bienen sehen. Z Vergl Physiol 41:49–110

    Google Scholar 

  • Dorst J (1974) The life of birds, vol I: The colours of birds. Weidenfeld and Nicolson, London, pp 48–59

    Google Scholar 

  • Durrer H (1986) Colouration. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 2, Chap V, The skin of birds, part 12. Springer, Berlin Heidelberg New York, pp 239–247

    Google Scholar 

  • Durrer H, Villiger B (1966) Schillerfarben der Trogoniden. Eine elektronenmikroskopische Untersuchung. J Ornithol 107:1–26

    Google Scholar 

  • Dyck J (1971) Structure and colour-production of the blue barbs ofAgopornis roseicollis andCotinga maynana. Z Zellforsch 115:17–29

    Google Scholar 

  • Eisner T, Silberglied RE, Aneshansley D, Carrel JE, Howland HC (1969) Ultraviolet video-viewing: the television camera as an insect eye. Science 166:1172–1174

    Google Scholar 

  • Emmerton J, Delius JD (1980) Wavelength discrimination in the visible and ultraviolet spectrum by pigeons. J Comp Physiol 141:47–52

    Google Scholar 

  • Gerlinger H, Schlemmer H (1988) Simultanspektrometer für die Produktkontrolle. GIT Fachz Lab 32:167–170

    Google Scholar 

  • Goldsmith TH, Collins JS, Perlman DL (1981) A wavelength discrimination function for the hummingbirdArchilochus alexandri. J Comp Physiol 143:103–110

    Google Scholar 

  • Goldsmith TH, Collins JS, Licht S (1984) The cone oil droplets of avian retinas. Vision Res 24:1661–1671

    Google Scholar 

  • Graf V, Norren DV (1974) A blue sensitive mechanism in the pigeon retina: λmax 400 nm. Vision Res 14:1203–1209

    Google Scholar 

  • Huth H-H, Burkhardt D (1972) Der spektrale Sehbereich eines Violettohr-Kolibris. Naturwissenschaften 59:650

    Google Scholar 

  • Jane SD, Bowmaker JK (1988) Tetrachromatic colour vision in the duck (Anas platyrhynchos L.): microspectrophotometry of visual pigments and oil droplets. J Comp Physiol A 162:225–235

    Google Scholar 

  • Kreithen ML, Eisner T (1978) Ultraviolet light detection by the homing pigeon. Nature 272:347–348

    Google Scholar 

  • Leibmann PA, Granda AM (1975) Super dense carotenoid spectra resolved in single cone oil droplets. Nature 253:370–372

    Google Scholar 

  • Lutz FE (1924) Apparantly non-selective characters and combination of characters, including a study of ultraviolet in relation to the flower-visiting habits of insects. Ann NY Acad Sci 29:181–283

    Google Scholar 

  • Menzel R (1987) Farbensehen blütenbesuchender Insekten. Internationales Büro der Kernforschungsanlage, Jülich

  • Meyer-Rochow VB, Eguchi E (1983) Flügelfarben, wie sie die Falter sehen — a study of UV and other colour patterns in Lepidoptera. Ann Zool Jpn 56:85–99

    Google Scholar 

  • Munsell Book of Color (1976) Munsell Color Corporation, Baltimore

  • Needham AE (1974) The significance of zoochromes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Neumeyer Ch (1988) Das Farbensehen des Goldfisches. Eine verhaltensphysiologische Analyse. Thieme, Stuttgart

    Google Scholar 

  • Norren DV (1975) Research note. Two short wavelength sensitive cone systems in pigeon, chicken and daw. Vision Res 15:1164–1166

    Google Scholar 

  • Schiemenz F (1924) Über den Farbensinn der Fische. Z Vergl Physiol 1:175–220

    Google Scholar 

  • Schwind R (1985) Sehen unter und über Wasser, Sehen von Wasser. Das Sehsystem eines Wasserinsekts. Naturwissenschaften 72:343–352

    Google Scholar 

  • Silberglied RE (1979) Communication in the ultraviolet. Annu Rev Ecol Syst 10:373–398

    Google Scholar 

  • Vetter W, Englert G, Rigassi N, Schwieter U (1971) Spectroscopic methods. In: Isler O (ed) Carotenoids, IV. Birkhäuser, Basel, pp 189–266

    Google Scholar 

  • Voitkevich AA (1966) The feathers and plumage of birds. Sidgwick and Jackson, London, pp 20–39

    Google Scholar 

  • Wehner R (1987) ‘Matched filters’ — neural models of the external world. J Comp Physiol A 161:511–531

    Google Scholar 

  • Wright AA (1972) The influence of ultraviolet radiation on the pigeon's colour discrimination. J Exp Anal Behav 17:325–337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Johann Schwartzkopff on his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhardt, D. UV vision: a bird's eye view of feathers. J. Comp. Physiol. 164, 787–796 (1989). https://doi.org/10.1007/BF00616750

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616750

Keywords

Navigation