Skip to main content
Log in

Centrophobism inDrosophila melanogaster

II. Physiological approach to search and search control

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Ether-induced avoidance of the center of an arena by a walking fly does not seem to be the outcome of at least two post-narcotic effects of ether vapor: the inactivation of acetylcholinesterase (Gage et al. 1979), and the inactivation of locomotion (van Dijken et al. 1977). The latter is actually due to a change in the action pattern of search and search control. The centrophobism arising either irreversibly in response to ether treatment, or reversibly in the course of accommodation to a new territory, increases the probability of brief stops at the outer boundary of the arena (Figs. 2–4).

Acquisition and maintenance of ‘orientedness’ by exploration of the available territory or evaluation of sensory aids to orientation appears indispensible if a fly wants to avoid the center of the arena. However, centrophobism can be explained without assumption of voluntary behavior. Persistence of direction during random walk in the arena is sufficient to divert locomotor activity from the center to the surround (Figs. 5, 6). The centrophobism found, so far, is equivalent to a ‘mean free path’ of about 4 cm in etherized flies, and about 2 cm in non-etherized flies (Table 1). Search control by variation of persistence in the track of a fly is compatible with results obtained in other insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner M, Thompson JN jr (1978) I. The laboratory culture ofDrosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology ofDrosophila 2a:1–109. Academic Press, London New York San Francisco

    Google Scholar 

  • Benzer S (1971) From the gene to behavior. J Am Med Assoc 218:1015–1022

    Google Scholar 

  • Bülthoff H, Götz KG, Herre M (1982) Recurrent inversion of visual orientation in the walking fly,Drosophila melanogaster. J Comp Physiol 148:471–481

    Google Scholar 

  • Connolly K (1966) Locomotor activity inDrosophila. II. Selection for active and inactive strains. Anim Behav 14:444–449

    Google Scholar 

  • Deery BJ, Parsons PA (1972) Ether resistance inDrosophila melanogaster. Theor Appl Genet 42:208–214

    Google Scholar 

  • Dijken FR van, Sambeek MJPW van, Scharloo W (1977) Influence of anaesthesia by carbon dioxide and ether on locomotor activity inDrosophila melanogaster. Experientia 33:1360–1361

    Google Scholar 

  • Ewing AW (1963) Attempts to select for spontaneous activity inDrosophila melanogaster. Anim Behav 11:369–378

    Google Scholar 

  • Fischbach KF (1979) Simultaneous and successive colour contrast expressed in ‘slow’ phototactic behavior of walkingDrosophila melanogaster. J Comp Physiol 130:161–171

    Google Scholar 

  • Gage PW, Hamill OP, Helden D van (1979) Dual effects of ether on end-plate currents. J Physiol 287:353–369

    Google Scholar 

  • Götz KG (1983) Genetic defects of visual orientation inDrosophila. Verh Dtsch Zool Ges 1983:83–99

    Google Scholar 

  • Götz KG, Biesinger R (1985) Centrophobism inDrosophila melanogaster. I. Behavioral modification induced by ether. J Comp Physiol A 156:319–327

    Google Scholar 

  • Greenspan RJ, Finn JA jr, Hall JC (1980) Acetylcholinesterase mutants inDrosophila and their effects on the structure and function of the central nervous system. J Comp Neurol 189:741–774

    Google Scholar 

  • Grossfield J (1978) Non-sexual behavior ofDrosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology ofDrosophila 2b:1–126. Academic Press, London New York San Francisco

    Google Scholar 

  • Hall JC, Greenspan RJ, Harris WA (1982) Genetic neurobiology, MIT Press, Cambridge London

    Google Scholar 

  • Ho MW, Tucker C, Keeley D, Saunders PT (1983) Effects of successive generations of ether treatment on penetrance and expression of the bithorax phenocopy inDrosophila melanogaster. J Exp Zool 225:357–368

    Google Scholar 

  • Hoffmann G (1983) Optimization of Brownian search strategies. Biol Cybern 49:21–31

    Google Scholar 

  • Ikeda K (1974) Patterned motor activities released by anesthetics. Proc Int Union Phys Sci 11:160

    Google Scholar 

  • Ikeda K, Kaplan WD (1974) Neurophysiological genetics inDrosophila melanogaster. Am Zool 14:1055–1066

    Google Scholar 

  • Kalmus H (1942) Narcosis and asphyxiation in some species and mutants ofDrosophila. J Exp Biol 19:238–254

    Google Scholar 

  • Kaplan WD (1972) Genetic and behavioral studies ofDrosophila neurological mutants. In: Kiger JA jr (ed) The biology of behavior. Oregon State University Press, Oregon

    Google Scholar 

  • Kidd KK (1963) Es: ether sensitive mutant ofDrosophila melanogaster. Drosophila Inf Serv 37:49

    Google Scholar 

  • Lopatina NG, Marshin VG, Nikitina JA, Ponomarenko VV, Smirnova GP, Sogrin VV, Chesnokova EG (1980) Rate of ether narcosis in relation to insect behavior: a neurophysiological trait. Genetika 16:309–317 (in Russian)

    Google Scholar 

  • Montijn C, Dijken FR van, Boer MH den, Scharloo W (1974) Apparatus for a measurement of locomotor activity inDrosophila. Drosophila Inf Serv 51:151

    Google Scholar 

  • Moorhouse JE, Fosbrooke JHM, Kennedy JS (1978) ‘Paradoxical driving’ of walking activity in locusts. J Exp Biol 72:1–16

    Google Scholar 

  • Ogaki M, Nakashima-Tanaka E, Murakami S (1967) Inheritance of ether resistance inDrosophila melanogaster. Jpn J Genet 42:387–394

    Google Scholar 

  • Ogaki M, Nabata H, Nakashima-Tanaka E, Gamo S (1980) Ether sensitivity at embryonic stage ofDrosophila melanogaster. Drosophila Inf Serv 55:117

    Google Scholar 

  • Parkash O (1971) The behavioral changes produced by thymidine-induced temperature-sensitive lethal factors inDrosophila melanogaster. Drosophila Inf Serv 46:67

    Google Scholar 

  • Peterson PA (1947) A sex-linked character expressed as ethersensitive (es). Drosophila Inf Serv 21:88

    Google Scholar 

  • Powell JR, Dobzhansky T (1976) How far do flies fly? Am Sci 64:179–185

    Google Scholar 

  • Rasmuson B (1955) A nucleo-cytoplasmic anomaly inDrosophila melanogaster causing increased sensitivity to anaesthetics. Hereditas 41:147–208

    Google Scholar 

  • Richards CD (1976) Anaesthetic mechanisms. Nature 262:534

    Google Scholar 

  • Ringo JM (1971) The effects of anaesthetization upon survival and behavior ofDrosophila grimshavi. Drosophila Inf Serv 47:118–119

    Google Scholar 

  • Sewell DF (1979) Effect of temperature and density variation on locomotor activity inDrosophila melanogaster: a comparison of behavioural measures. Anim Behav 27:312–313

    Google Scholar 

  • Skrzipek KH, Kröner B, Hager H (1979) Laboratory studies on aggression inDrosophila melanogaster. Z Tierpsychol 49:87–103

    Google Scholar 

  • Syrjämäki J (1962) Humidity perception inDrosophila melanogaster. Ann Zool Soc Vanamo 23:1–72

    Google Scholar 

  • Venard R, Pichon Y (1981) Étude électro-antennographique de réponse périphérique de l'antenne deDrosophila melanogaster à des stimulations odorantes. CR Acad Sci Paris 293:839–842

    Google Scholar 

  • Watson JE, Scheinberg E (1965) The effects of anesthetization inDrosophila melanogaster. Genetics 52:483

    Google Scholar 

  • Watson JE, Scheinberg E, Dittmar LA (1965) Effects of ether on fitness traits. Drosophila Inf Serv 40:64

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol VII/6C, pp 287–616)

    Google Scholar 

  • Wigglesworth VB (1941) The sensory physiology of the human lousePediculus humanus corporis De Geer (Anoplura). Parasitol 33:67–109

    Google Scholar 

  • Wijsman EM (1981) The effect of ether on mating behavior inDrosophila simulans y w. Drosophila Inf Serv 56:158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, K.G., Biesinger, R. Centrophobism inDrosophila melanogaster . J. Comp. Physiol. 156, 329–337 (1985). https://doi.org/10.1007/BF00610726

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610726

Keywords

Navigation