Skip to main content
Log in

Visual movement detection under light- and dark-adaptation in the fly,Musca domestica

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Visual movement detection has been investigated both under photopic and scotopic light conditions by measuring the optomotor turning responses of walking flies,Musca domestica. From the data it is concluded that the spatial sampling pattern underlying movement detection changes with the average stimulus brightness. At high luminance nearest-neighbour interactions clearly dominate whereas at very low light intensities interactions between receptors having one, two and three times the minimum angular separation contribute with about equal strength to the response (Figs. 6, 7). This change in the spatial interaction pattern may be based on neuronal recruitment of wide-angle movement detectors at low light levels or, alternatively, on neural pooling of signals from neighbouring receptors prior to the movement-specific interactions. Both mechanisms may provide a gain in absolute light sensitivity at the cost of spatial acuity.

The temporal properties of movement detection also change with stimulus brightness. High grating speeds are detected less efficiently at low luminance (Fig. 3). These temporal changes may be attributed to equivalent changes in the photoreceptor responses.

Negative optomotor responses may be elicited by a pair of test stimuli separated in visual angle by about 15° corresponding to 7–8 rows of ommatidia (Figs. 9, 10). This unexpected behaviour is suggested to reflect the influence of lateral inhibition which extends, in the periphery of the visual system, with decreasing strength over a range of at least 5 rows of ommatidia. Movement-specific interactions on the other hand do not appear to extend beyond 4–5 rows of ommatidia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

R1-6 :

the six peripheral receptors in a fly's ommatidium

R7/8 :

the two central receptors in a fly's ommatidium

Δρ :

half width of angular sensitivity function

Δϑ * :

angle between optical axes of neighbouring rows of ommatidia (√3/2 interommatidial angle)

λ :

spatial wavelength of periodic grating

m rec :

light modulation in a receptor

References

  • Barlow, H.B.: Dark and light adaptation: psychophysics. In: Handbook of sensory physiology, Vol. VII/4. Visual psychophysics. Jameson, D., Hurvich, L.M. (eds.), pp. 1–28. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybernetics24, 85–101 (1976)

    Google Scholar 

  • Buchner, E., Götz, K.G., Sträub, C.: Elementary detectors for vertical movement in the visual system ofDrosophila. Biol. Cybernetics31, 235–242 (1978)

    Google Scholar 

  • Collett, T.S., Land, M.F.: How hoverflies compute interception courses. J. Comp. Physiol.125, 191–204 (1978)

    Google Scholar 

  • Dvorak, D., Snyder, A.: The relationship between visual acuity and illumination in the fly,Lucilia sericata. Z. Naturforsch.33c, 139–143 (1978)

    Google Scholar 

  • Eckert, H.: Die spektrale Empfindlichkeit des Komplexauges vonMusca. Kybernetik9, 145–156 (1971)

    Google Scholar 

  • Eckert, H.: Optomotorische Untersuchungen am visuellen System der StubenfliegeMusca domestica L. Kybernetik14, 1–23 (1973)

    Google Scholar 

  • Fermi, G., Reichardt, W.: Optomotorische Reaktionen der FliegeMusca domestica. Kybernetik2, 15–28 (1963)

    Google Scholar 

  • Götz, K.G.: Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik2, 77–92 (1964)

    Google Scholar 

  • Hardie, R.C.: Electrophysiological analysis of fly retina. I: Comparative properties of R1-6 and R7 and 8. J. Comp. Physiol.129, 19–33 (1979)

    Google Scholar 

  • Hassenstein, B.: Ommatidienraster und afferente Bewegungsintegration. Z. Vergl. Physiol.33, 301–326 (1951)

    Google Scholar 

  • Hassenstein, B.: Über die Wahrnehmung der Bewegung von Figuren und unregelmäßigen Helligkeitsmustern. Z. Vergl. Physiol.40, 556–592 (1958)

    Google Scholar 

  • Heisenberg, M., Götz, K.G.: The use of mutations for the partial degradation of vision inDrosophila melanogaster. J. Comp. Physiol.98, 217–241 (1975)

    Google Scholar 

  • Heisenberg, M., Buchner, E.: The role of retinula cell types in visual behavior ofDrosophila melanogaster. J. Comp. Physiol.117, 127–162 (1977)

    Google Scholar 

  • Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge vonMusca. Exp. Brain Res.3, 248–270 (1967)

    Google Scholar 

  • Kirschfeld, K.: The visual system ofMusca: Studies on optics, structure and function. In: Information processing in the visual system of arthropods. Wehner, R. (ed.), pp. 61–74, Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge vonMusca. Kybernetik5, 47–52 (1968)

    Google Scholar 

  • Kirschfeld, K., Lutz, B.: Lateral inhibition in the compound eye of the flyMusca. Z. Naturforsch.29c, 95–97 (1974)

    Google Scholar 

  • Land, M.F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). J. Comp. Physiol.89, 331–357 (1974)

    Google Scholar 

  • Laughlin, S.B., Hardie, R.C.: Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J. Comp. Physiol.128, 319–340 (1978)

    Google Scholar 

  • Mimura, K.: Some spatial properties in the first optic ganglion of the fly. J. Comp. Physiol.105, 65–82 (1976)

    Google Scholar 

  • Pick, B.: Visual flicker induces orientation behavior in the flyMusca. Z. Naturforsch.29c, 310–312 (1974)

    Google Scholar 

  • Pick, B.: Specific misalignments of rhabdomere visual axes in the neural superposition eye of dipteran flies. Biol. Cybernetics26, 215–224 (1977)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Considerations on models of movement detection. Kybernetik13, 223–227 (1973)

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of orientation behaviour of the fly. Q. Rev. Biophys.9, (3), 311–438 (1976)

    Google Scholar 

  • Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the flyMusca. Kybernetik6, 149–162 (1969)

    Google Scholar 

  • Smola, U.: Voltage noise in insect visual cells. In: Neural principles in vision. Zettler, F., Weiler, R. (eds.), pp. 194–213. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  • Snyder, A.W.: Acuity of compound eyes: physical limitations and design. J. Comp. Physiol.116, 161–182 (1977)

    Google Scholar 

  • Zettler, F.: Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand; gemessen am einzelnen Lichtrezeptor vonCalliphora erythrocephala. Z. Vergl. Physiol.64, 432–499 (1969)

    Google Scholar 

  • Zettler, F., Weiler, R.: Neuronal processing in the first optic neuropile of the compound eye of the fly. In: Neural principles in vision. Zettler, F., Weiler, R. (eds.), pp. 227–237. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Shortly before completion of the manuscript Dr. Bernward Pick died unexpectedly at the age of 34. We who knew him were deeply shocked by his death

We wish to thank H. Bülthoff, Drs. N. Franceschini, K.G. Götz, R. Hardie, K. Kirschfeld, T. Poggio, W. Reichardt and C. Wehrhahn for critically reading and discussing the manuscript. We are obliged to Miss C. Straub and M. Heusel for preparing the figures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pick, B., Buchner, E. Visual movement detection under light- and dark-adaptation in the fly,Musca domestica . J. Comp. Physiol. 134, 45–54 (1979). https://doi.org/10.1007/BF00610276

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610276

Keywords

Navigation