Skip to main content
Log in

Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Thirty-five imipramine treated patients were phenotyped with regard to polymorphic drug oxidation using sparteine and/or debrisoquine.

During treatment with 100 mg imipramine per day the mean steady-state concentrations and ratios in 28 extensive metabolizers were: imipramine 169 nmol/l; desipramine 212 nmol/l; 2-OH-imipramine/imipramine 0.25; 2-OH-desipramine/desipramine 0.57. The corresponding values in two poor metabolizers were: imipramine 455 and 302 nmol/l; desipramine 1148 and 1721 nmol/l; 2-OH-imipramine/imipramine 0.06 and 0.05; 2-OH-desipramine/desipramine: 0.09 and 0.04 respectively.

The metabolic ratios (MR) sparteine/dehydrosparteine and debrisoquine/4-OH-debrisoquine (% of dose in 12-h urine samples) correlated poorly with the imipramine steady-state concentrations during administration of 100 mg per day, but quite well with the desipramine steady-state concentrations. Significant negative correlations were found between sparteine and debrisoquine MR and the 2-OH-imipramine/imipramine and 2-OH-desipramine/desipramine ratios.

In most patients the initial dose was changed to obtain concentrations in the therapeutic range, and concentrations for imipramine + desipramine of (mean ± SD) 713±132 nmol/l were achieved in 33 patients. The therapeutic dose was 50 mg per day in one poor metabolizer and ranged from 50–400 mg per day in 32 extensive metabolizers. There was a weak negative correlation between sparteine MR and daily dose.

Treatment with imipramine inhibited metabolism of both sparteine and debrisoquine (MR values about doubled), but did not affect the interpatient correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balant-Gorgia AE, Schulz P, Dayer P, Balant L, Kubli A, Hertsch C, Garrone G (1982) Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Arch Psych Neurol Sci 232: 215–222

    Google Scholar 

  2. Bertilsson L, Åberg-Wistedt A (1983) The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine. Br J Clin Pharmacol 15: 388–390

    Google Scholar 

  3. Bjerre M, Gram LF, Kragh-Sørensen P, Kristensen CB, Pedersen OL, Møller M, Thayssen P (1981) Dose dependent kinetics of imipramine in elderly patients. Psychopharmacology 75: 354–357

    Google Scholar 

  4. Brøsen K, Otton SV, Gram LF (1985) Sparteine oxidation polymorphism in Denmark. Acta Pharmacol Toxicol 57: 357–360

    Google Scholar 

  5. Brøsen K, Gram LF, Klysner R, Bech P (1986a) Steady-state levels of imipramine and its metabolites: Significance of dose-dependent kinetics. Eur J Clin Pharmacol 30: 43–49

    Google Scholar 

  6. Brøsen K, Otton SV, Gram LF (1986b) Sparteine oxidation polymorphism: A family study. Br J Clin Pharmacol (in press)

  7. Distlerath LM, Guengerich FP (1984) Characterization of a human liver cytochrome P-450 involved in the oxidation of debrisoquine and other drugs by using antibodies raised to the analogous rat enzyme. Proc Natl Acad Sci USA 81: 7348–7352

    Google Scholar 

  8. Eichelbaum M, Bertilsson L, Säwe J, Zekorn C (1982) Polymorphic oxidation of sparteine and debrisoquine: Related pharmacogenetic entities. Clin Pharmacol Ther 31: 184–186

    Google Scholar 

  9. Evans DAP, Mahgoub A, Sloan TP, Idle JR, Smith RL (1980) A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet 17: 102–105

    Google Scholar 

  10. Evans DAP, Harmer D, Downham DY, Whibley EJ, Idle JR, Ritchie J, Smith RL (1983) The genetic control of sparteine and debrisoquine metabolism in man with new methods of analysing bimodal distributions. J Med Genet 20: 321–329

    Google Scholar 

  11. Glassman AH, Perel JM, Shostak M, Kantor SJ, Fleiss JL (1977) Clinical implication of imipramine plasma levels for depressive illness. Arch Gen Psychiatr 34: 197–204

    Google Scholar 

  12. Gram LF (1974) Metabolism of tricyclic antidepressants. Dan Med Bull 21: 218–231

    Google Scholar 

  13. Gram LF (1975) Effects of perphenazine on imipramine metabolism in man. Psychopharmacology Comm 1: 165–175

    Google Scholar 

  14. Gram LF, Søndergaard I, Christiansen J, Petersen GO, Bech P, Reisby N, Ibsen I, Ortmann J, Nagy A, Dencker SJ, Jacobsen O, Krautwald O (1977) Steady-state kinetics of imipramine in patients. Psychopharmacology (Berlin) 54: 255–261

    Google Scholar 

  15. Gram LF, Bjerre M, Kragh-Sørensen P, Kvinesdal B, Molin J, Pedersen OL, Reisby N (1983) Imipramine metabolites in blood of patients during therapy and after overdose. Clin Pharmacol Ther 33: 335–342

    Google Scholar 

  16. Gram LF, Brøsen K, Christensen P, Kragh-Sørensen P (1986) Pharmacokinetic considerations relevant to the pharmacodynamics of antidepressants. In: Dahl SG, Gram LF, Paul SM, Potter WZ (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  17. Inaba T, Vinks A, Otton SV, Kalow W (1983) Comparative pharmacogenetics of sparteine and debrisoquine. Clin Pharmacol Ther 33: 394–401

    Google Scholar 

  18. Lennard MS, Silas JH, Smith AJ, Tucker GT (1977) Determination of debrisoquine and its 4-hydroxy metabolite in biological fluids by gas chromatography with flame-ionization and nitrogen-selective detection. J Chromatogr 133: 161–166

    Google Scholar 

  19. Mellström B, Bertilsson L, Säwe J, Schulz HU, Sjöqvist F (1981) E- and Z-10-hydroxylation of nortriptyline: Relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 30: 189–193

    Google Scholar 

  20. Mellström B, Bertilsson L, Lou Y-C, Säwe J, Sjöqvist F (1983) Amitriptyline metabolism: Relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 34: 516–520

    Google Scholar 

  21. Mellström B, Säwe J, Bertilsson L, Sjöqvist F (1986) Amitriptyline metabolism: Association with debrisoquine hydroxylation in non-smokers. Clin Pharmacol Ther 39: 369–371

    Google Scholar 

  22. Nordin C, Siwers B, Benitez J, Bertilsson L (1985) Plasma concentrations of nortriptyline and its 10-hydroxy metabolite in depressed patients — relationship to the debrisoquine hydroxylation metabolic ratio. Br J Clin Pharmacol 19: 832–835

    Google Scholar 

  23. Otton SV, Inaba T, Kalow W (1983) Inhibition of sparteine oxidation in human liver by tricyclic antidepressants and other drugs. Life Sci 32: 795–800

    Google Scholar 

  24. Reisby N, Gram LF, Bech P, Nagy A, Petersen GO, Ortmann J, Ibsen I, Dencker SJ, Jacobsen OF, Krautwald O, Søndergaard I, Christiansen J (1977) Imipramine: Clinical effects and pharmacokinetic variability. Psychopharmacology (Berlin) 54: 263–272

    Google Scholar 

  25. Spina E, Birgersson C, von Bahr C, Ericsson O, Mellström B, Steiner E, Sjöqvist F (1984) Phenotypic consistency in hydroxylation of desmethylimipramine and debrisoquine in healthy subjects and in human liver microsomes. Clin Pharmacol Ther 36: 677–682

    Google Scholar 

  26. Steiner E, Iselius L, Alvan G, Lindsten J, Sjöqvist F (1985) A family study of genetic and environmental factors determining polymorphic hydroxylation of debrisoquine. Clin Pharmacol Ther 38: 394–401

    Google Scholar 

  27. Vinks A, Inaba T, Otton SV, Kalow W (1982) Sparteine metabolism in Canadian Caucasians. Clin Pharmacol Ther 31: 23–29

    Google Scholar 

  28. Woolhouse NM, Adjepon-Yamoah KK, Mellström B, Hedman A, Bertilsson L, Sjöqvist F (1984) Nortriptyline and debrisoquine hydroxylations in Ghanaian and Swedish subjects. Clin Pharmacol Ther 36: 374–378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brøsen, K., Klysner, R., Gram, L.F. et al. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 30, 679–684 (1986). https://doi.org/10.1007/BF00608215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00608215

Key words

Navigation