Skip to main content
Log in

The mechanics of stridulation of the cricketGryllus campestris

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Details in the stridulatory movement ofGryllus campestris were investigated using an improved high resolution miniature angle measurement system. The following results were obtained: During the closing (sound producing) stroke, the speed of the plectrum always has the same value (within measuring accuracy) at a given position. Plectrum speed is directly proportional to tooth spacing, which is known to vary along the file. The only exception to this rule were occasions when closing velocities of precisely 2 times the standard value were found. In between values were never recorded. While temperature has a large effect on the opening speed and duration, the closing speed has a very smallQ 10 (0.07) which is equal to theQ 10 of the resonance frequency of the harp. When the harps are removed, the proportionality between tooth spacing and scraper velocity is lost; the velocity is much increased (up to 3-fold) and the variance of the speed is enhanced 5-fold.

These results are discussed with respect to 3 hypothetical models explaining the function of the sound generator system. The model describing the cricket sound generator as a clockwork with an escapement system is capable of accommodating all experimental data without any extra assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey W, Broughton WB (1970) The mechanics of stridulation in bush crickets (Tettigonioidea, Orthoptera). J Exp Biol 52:507–517

    Google Scholar 

  • Bailey WJ, Stephen RO (1984) Auditory acuity in the orientation behavior of the bushcricketPachysagella australis Walker (Orthoptera, Tettigoniidae, Saginae). Anim Behav 32:816–829

    Google Scholar 

  • Bennet-Clark HC (1970) The mechanism and efficiency of sound production in mole crickets. J Exp Biol 52:619–652

    Google Scholar 

  • Doherty JA (1985) Temperature coupling and ‘trade-off’ phenomena in the acoustic communication system of the cricket,Gryllus bimaculatus de Geer (Gryllidae). J Exp Biol 114:17–35

    Google Scholar 

  • Dumortier B (1963) The physical characteristics of sound emissions in Arthropoda. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier Publishing Company, Amsterdam London New York, pp 346–373

    Google Scholar 

  • Elliott CJH, Koch UT (1983) Sensory feedback stabilizing reliable stridulation in the field cricketGryllus campestris L. Anim Behav 31:887–901

    Google Scholar 

  • Elliott CJH, Koch UT (1985) The clockwork cricket. Naturwissenschaften 72:150–152

    Google Scholar 

  • Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355

    Google Scholar 

  • Gazeley WJ (1975) Clock and watch escapements. 2nd edn. Butterworth, London

    Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen vonGryllus campestris L. Z Tierpsychol 12:12–48

    Google Scholar 

  • Koch UT (1980) Analysis of cricket stridulation using miniature angle detectors. J Comp Physiol 136:247–256

    Google Scholar 

  • Koch UT, Elliott CJH (1982) Miniature angle detectors — principles and improved evaluation methods. In: Nachtigall W (ed) Biona-Report 2. Akad Wiss Mainz. Fischer, Stuttgart New York, pp 41–50

    Google Scholar 

  • Kutsch W (1969) Neuromusculäre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z Vergl Physiol 63:335–378

    Google Scholar 

  • Nocke H (1971) Biophysik der Schallerzeugung durch die Vorderflügel der Grillen. Z Vergl Physiol 74:272–314

    Google Scholar 

  • Pasquinelly F, Busnel M-C (1954) Etudes preliminaires sur les mécanismes de la production des sons par les Orthoptères. Ann Epiphytes 1954:145–153

    Google Scholar 

  • Pierce GW (1948) The songs of insects. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Regen J (1913) Über die Anlockung des Weibchens vonGryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens. Pflügers Arch 155:193–200

    Google Scholar 

  • Schaffner KH (1985) Mechanorezeptoren auf den Vorderflügeln der Grillenmännchen und ihre Bedeutung bei der Stridulation. Dissertation, Universität München

  • Schaffner KH, Koch UT (1987) Effects of wing campaniform sensilla lesions on stridulation in crickets. J Exp Biol (in press)

  • Sales GD, Pye JD (1974) Ultrasonic communication by animals. Chapman and Hall, London, pp 98–148

    Google Scholar 

  • Schelleng JC (1974) The physics of the bowed string. Sci Am 230:87–95

    Google Scholar 

  • Suga N (1966) Ultrasonic production and its reception in some neotropical Tettigoniidae. J Insect Physiol 12:1039–1050

    Google Scholar 

  • Walker TJ (1962) Factors responsible for intra-specific variation in the calling song of crickets. Evolution 16:407–428

    Google Scholar 

  • Zippelius HM (1949) Die Paarungsbiologie einiger Orthopteren-Arten. Z Tierpsychol 6:372–390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, U.T., Elliott, C.J.H., Schäffner, K.H. et al. The mechanics of stridulation of the cricketGryllus campestris . J. Comp. Physiol. 162, 213–223 (1988). https://doi.org/10.1007/BF00606086

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00606086

Keywords

Navigation