Skip to main content
Log in

Einfluß von Insulin auf den regionalen Phospholipidstoffwechsel des Kaninchengehirns in vivo

Effect of insulin on phospholipid metabolism in various parts of the rabbit's brain in vivo

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The effects of insulin in massive doses on total phospholipids and individual phospholipid fractions of cerebrum, cerebral cortex, cerebellum and medulla oblongata was studied on rabbits in Pernocton® anaesthesia. The experiments were performed in order to correlate the time course of the decrease in blood glucose with phospholipid changes and concomitant electrographic patterns of the CNS.

  1. 1.

    Statistically significant decreases in phospholipid content of cerebrum, cerebral cortex and cerebellum did not take place until blood sugar levels were lowered to a critical concentration. This concentration was found to be different in various parts of the brain. In the medulla oblongata no significant decrease of phospholipid content was detected.

  2. 2.

    No effect on regional phospholipids was observed when blood sugar levels were highly increased above normal levels by simultaneous administration of insulin and glucose.

  3. 3.

    The decrease in brain lipid phosphorus during insulin hypoglycemia is explained by a diminished rate of synthesis as well as a breakdown of phospholipids vielding energy supply.

Zusammenfassung

An Kaninchen in Pernocton®-Narkose wurde die Wirkung hoher Insulingaben auf Gesamtphospholipide und verschiedene Phospholipidkomponenten von Großhirn, Großhirnrinde, Kleinhirn und Medulla oblongata in zeitlicher Beziehung zur abnehmenden Blutglucosekonzentration und der elektrischen Hirnfunktion untersucht.

  1. 1.

    Statistisch signifikante Verminderungen im Gehalt der Phospholipide traten in Großhirn, Großhirnrinde und Kleinhirn erst mit Unterschreiten einer bestimmten, regional unterschiedlichen, kritischen Blutglucosekonzentration auf. In der Medulla oblongata war keine signifikante Abnahme der Phospholipidgehalte nachweisbar.

  2. 2.

    Es erfolgte keine Veränderung der Phospholipidgehalte einzelner Hirnanteile, wenn durch gleichzeitige Insulin- und Glucoseverabreichung die Blutglucosekonzentration erheblich erhöht wurde.

  3. 3.

    Die Verminderung endogener Phospholipide des Gehirns während Insulinhypoglykämie wird mit einem der Energiebildung dienenden Abbau sowie einer verzögerten Neubildung erklärt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Abood, L. G., Geiger, A.: Breakdown of proteins and lipids during glucose-free perfusion of the cat's brain. Amer. J. Physiol.182, 557–560 (1955).

    Google Scholar 

  • Ansell, G. B., Dohmen, H.: The metabolism of individual phospholipids in the rat brain during hypoglycaemia, anaesthesia and convulsions. J. Neurochem.2, 1–10 (1957).

    Google Scholar 

  • Ansell, G. B., Spanner, S.: The effect of insulin on the formation of phosphorylcholine and phosphorylethanolamine in the brain. J. Neurochem.4, 325–331 (1959).

    Google Scholar 

  • Chesler, A., Himwich, H. E.: Glycolysis in the parts of the central nervous system of cats and dogs during growth. Amer. J. Physiol.142, 544–549 (1944).

    Google Scholar 

  • Cochran, W. G.: Some methods for strengthening the common chi-square tests. Biometrics10, 417–451 (1954).

    Google Scholar 

  • Dawson, R. M. C., Richter, D.: The phosphorus metabolism of the brain. Proc. roy. Soc. B137, 252–267 (1950).

    Google Scholar 

  • Debuch, H., Mertens, W., Winterfeld, M.: Quantitative Bestimmung der Phospholipide mit Hilfe einer zeidimensionalen dünnschichtchromatographischen Methode. Hoppe-Seylers Z. physiol. Chem.349, 896–902 (1968).

    Google Scholar 

  • Della Porta, P., Maiolo, A. T., Negri, V. U., Rossella, E.: Central blood flow and metabolism in therapeutic insulin coma. Metabolism13, 131–140 (1964).

    Google Scholar 

  • De Ropp, R. S., Snedeker, E. H.: Effect of drugs on amino acid levels in the rat brain: Hypoglycaemic agents. J. Neurochem.7, 128–134 (1961).

    Google Scholar 

  • Eisenberg, S., Seltzer, H. S.: The cerebral metabolic effects of acutely induced hypoglycemia in human subjects. Metabolism11, 1162–1168 (1962).

    Google Scholar 

  • Fazekas, J. F.: Pathologic physiology of cerebral dysfunction. Amer. J. Med.25, 89–96 (1958).

    Google Scholar 

  • Folch, J., Lees, M., Sloane-Stanley, G. H.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem.226, 497–509 (1957).

    Google Scholar 

  • Gebelein, H., Heite, H.-J.: Statistische Urteilsbildung. Berlin-Göttingen-Heidelberg: Springer 1951.

    Google Scholar 

  • Geiger, A., Magnes, J., Taylor, R. M., Veralli, M.: Effects of blood constituents on uptake of glucose and on metabolic rate of the brain in perfusion experiments. Amer. J. Physiol.177, 138–149 (1954).

    Google Scholar 

  • Gerard, R. W.: Metabolism and function in the nervous tissue. In: Neurochemistry. (K. A. C. Elliott, J. H. Page, and J. H. Quastel, ed.), pp. 458–484. Springfield, Ill.: Ch. C. Thomas 1955.

    Google Scholar 

  • Gottstein, U., Held, K.: Insulinwirkung auf den menschlichen Hirnmetabolismus von Stoffwechselgesunden und Diabetikern. Klin. Wschr.45, 18–23 (1967).

    Google Scholar 

  • Himwich, H. E.: Brain metabolism and central disorders. Chap. 2, 4 and 10. Baltimore: Williams and Williams 1951.

    Google Scholar 

  • —, Nahum, L. H.: Respiratory quotient of brain. Amer. J. Physiol.90, 389 (1929).

    Google Scholar 

  • Hinzen, D. H., Isselhard, W., Füsgen, I., Müller, U.: Phospholipid-Stoffwechsel und Funktion des Säugegehirns in vivo. I. Katabole Veränderungen der Phospholipide in verschiedenen Anteilen des Kaninchengehirns während Ischämie. Pflügers Arch.318, 117–129 (1970).

    Google Scholar 

  • Jackson, E. L.: The influence of sodium barbital upon the reaction of normal rabbits to successive doses of insulin. J. Pharmacol. exp. Ther.43, 277–285 (1931).

    Google Scholar 

  • Kerr, S. E., Ghantus, M.: The carbohydrate metabolism of brain. II. The effect of varying the carbohydrate and insulin supply on the glycogen, free sugar, and lactic acid in mammalian brain. J. biol. Chem.116, 9–19 (1936).

    Google Scholar 

  • Kety, S. S., Woodford, R. B., Harmel, M. H., Freyhan, F. A., Appel, K. E., Schmidt, C. F.: Cerebral blood flow and metabolism in schizophrenia. The effects of barbiturate seminarcosis, insulin coma and electroshock. Amer. J. Psychiat.104, 765–770 (1948).

    Google Scholar 

  • King, L. J., Lowry, O. H., Passonneau, J. V., Venson, V.: Effects of convulsants on energy reserves in the cerebral cortex. J. Neurochem.14, 599–711 (1967).

    Google Scholar 

  • Knauff, H. G., Marx, D., Mayer, G.: Das Verhalten der Proteine und der serin- und colaminhaltigen Phospholipide des Zentralnervensystems während der Insulinhypoglykämie. Hoppe-Seylers Z. physiol. Chem.326, 227–234 (1961).

    Google Scholar 

  • Konitzer, K., Solle, M., Voigt, S.: Wirkung von Insulin auf den Hirnstoffwechsel. I. Veränderung einiger Phosphor- und Stickstoff-Metaboliten des Rattenhirns in vivo nach Insulinapplikation. Acta biol. med. germ.15, 461–479 (1965).

    Google Scholar 

  • McGhee, E. G., Papageorge, E., Bloom, W. L., Lewis, G. T.: Effect of hyperinsulinism on brain phospholipide. J. biol. Chem.190, 127–132 (1951).

    Google Scholar 

  • Moruzzi, G.: Étude de l'activité électrique de l'écorce cérébrale dans l'hypoglycémie insulinique et dans différentes conditions modifiant le métabolisme des centres. Arch. int. Physiol.48, 45–101 (1939).

    Google Scholar 

  • Olsen, N. S., Klein, J. R.: Effect of insulin hypoglycemia on brain glucose, glycogen, lactate and phosphates. Arch. Biochem.13, 343–347 (1947).

    Google Scholar 

  • Page, J. H., Pasternak, L., Burt, M. L.: Einfluß des Insulins auf die Blut- und Organlipoide. Biochem. Z.231, 113–122 (1931).

    Google Scholar 

  • Petersen, V. P., Schou, M.: Intrazellular distribution of brain phospholipides. Acta physiol. scand.33, 309–315 (1955).

    Google Scholar 

  • Randall, L. O.: Effect of repeated insulin hypoglycemia on the lipid composition of rabbit tissues. J. biol. Chem.133, 129–136 (1940).

    Google Scholar 

  • Sugar, O., Gerard, R. W.: Anoxia and brain potentials. J. Neurophysiol.1, 558–572 (1938).

    Google Scholar 

  • Tarr, M., Brada, D., Samson, F. E., Jr.: Central high-energy phosphates during insulin hypoglycemia. Amer. J. Physiol.203, 690–692 (1962).

    Google Scholar 

  • Tews, J. K., Carter, S. H., Stone, W. E.: Chemical changes in the brain during insulin hypoglycemia and recovery. J. Neurochem.12, 679–693 (1965).

    Google Scholar 

  • Tokizane, T., Sawyer, C. H.: Sites of origin of hypoglycemic seizures in the rabbit. Arch. Neurol. Psychiat. (Chic.)77, 259–266 (1957).

    Google Scholar 

  • Tyler, D. B.: The effect of iodoacetate and malonate on the respiration of various region of the brain. Fed. Proc.4, 73 (1945).

    Google Scholar 

  • Van Deenen, L. L. M.: Membrane lipids and lipophilic proteins. In: The molecular basis of membrane function. D. C. Testeson (ed.) Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung der Deutschen Forschungsgemeinschaft.

Auszugsweise vorgetragen auf der 38. Tagung (Herbsttagung) der Deutschen Physiologischen Gesellschaft, Erlangen 1970.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinzen, D.H., Becker, P. & Müller, U. Einfluß von Insulin auf den regionalen Phospholipidstoffwechsel des Kaninchengehirns in vivo. Pflugers Arch. 321, 1–14 (1970). https://doi.org/10.1007/BF00594119

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00594119

Key-Words

Schlüsselwörter

Navigation