Skip to main content
Log in

Dependence of elastic and viscous properties of elastic arteries on circumferential wall stress at two different smooth muscle tones

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Using isolated segments of the abdominal aorta of normotensive rats, the dependence of the dynamic circumferential elastic modulus (E d), the loss modulus (ωηw), and and the coefficient of wall viscosity (ωηw) on the mean circumferential wall stress (σt) and the frequency of radius changes were studied under conditions of strong smooth muscle activation, induced by norepinephrine (NE), and during relaxation, induced by papaverine (PAP). The arterial segments were subjected to quasistatic and to small sinusoidal volume changes of 0.1–20 Hz at mean pressure levels of 1–23 kPa. The diameter changes were recorded by means of a photoelectric device with high spatial and temporal resolution.E d, ωηw, and ηw were calculated from the mean external and internal radii and from the dynamic pressure-radius changes determined at each pressure level.

Results and Conclusions

  1. 1.

    The relative decrease in mean radius produced by NE-activation of the resting smooth muscle, is only of the order of 10–15%. The maximum active decrease in radius occurs at a pressure level of about 10 kPa.

  2. 2.

    The quotient of the dynamic to the quasistatic elastic modulus increases from 1.5–2.1 under NE, and from 1.2–1.5 under PAP when σt is increased from 1·102 to 15·102 kPa.

  3. 3.

    E d and ηw increase with increasing σt. At a given σt,E d is virtually independent of frequency, while ωηw slightly increases with increasing frequency. The values ofE d and ηw obtained under NE and PAP are virtually identical. From these findings it is concluded that the elastic behaviour of the vessel wall is determined chiefly by the stiffness of the passive elements.

  4. 4.

    At a given frequency, ηw increases with increasing σt, while ηw decreases markedly with increasing frequency when σt remains unchanged. This behaviour is called, in the terms of polymer rheology, thixotropy or pseudoplasticity. The values of ηw obtained under NE and under PAP are virtually identical. This leads to the conclusion that the viscous properties of the arterial wall, under pulsatile conditions, reflect the viscosity of the passive elements rather than the viscosity of the contractile element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apter JT, Marquez E, Janas M (1970) Dynamic viscoelastic anisotropy of canine aorta correlated with aortic wall composition. J Assoc Advan Med Inst 4:15–21

    Google Scholar 

  2. Bauer RD, Pasch Th (1971) The quasistatic and circumferential elastic modulus of the rat tail artery studied at various wall stresses and tones of the vascular smooth muscle. Pflügers Arch 330:335–346

    Google Scholar 

  3. Benninghoff A (1927) Über die Beziehung zwischen elastischem Gerüst und glatter Muskulatur in der Arterienwand und ihre funktionelle Bedeutung. Z Zellforsch Mikroskop Anat 6:348–396

    Google Scholar 

  4. Bergel DH (1961) The dynamic elastic properties of the arterial wall. J Physiol (Lond) 156:458–469

    Google Scholar 

  5. Busse R, Bauer RD, Summa Y, Köner H, Pasch Th (1976) Comparison of the visco-elastic properties of the tail artery in spontaneously hypertensive and normotensive rats. Pflügers Arch 364:175–181

    Google Scholar 

  6. Cox RH (1972) A model for the dynamic mechanical properties of arteries. J Biomech 5:135–152

    Google Scholar 

  7. Cox RH (1977) Effects of age on the mechanical properties of rat carotid artery. Am J Physiol 233:H256-H263

    Google Scholar 

  8. Cox RH (1979) Physiology and hemodynamics of the macrocirculation. In: Stehbens WD (ed) Hemodynamics and the blood vessel wall. Charles C. Thomas Publisher, Springfield, pp 75–156

    Google Scholar 

  9. Dobrin PB (1978) Mechanical properties of arteries. Physiol Rev 58:397–460

    Google Scholar 

  10. Dobrin PB, Doyle JM (1970) Vascular smooth muscle and anisotropy of dog carotid artery. Circ Res 27:105–119

    Google Scholar 

  11. Dobrin PB, Rovick AA (1969) Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol 217:1644–1652

    Google Scholar 

  12. Frisen M, Magi M, Sonnerup L Viidik A (1969) Rheological analysis of soft collagen tissue. J Biomech 2:13–28

    Google Scholar 

  13. Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237:H620-H631

    Google Scholar 

  14. Gow BS (1972) The influence of vascular smooth muscle on the viscoelastic properties of blood vessels. In: Bergel DH (ed) Cardiovascular fluid dynamics, vol II. Academic Press, London New York, pp 65–110

    Google Scholar 

  15. Gow BS, Taylor MG (1968) Measurement of viscoelastic properties of arteries in the living dog. Circ Res 23:111–122

    Google Scholar 

  16. Hardung V (1952) Über eine Methode zur Messung der dynamischen Elastizität und Viskosität kautschukartiger Körper, insbesondere von Blutgefäßen und anderen elastischen Gewebsteilen. Helv Physiol Pharmacol Acta 10:482–498

    Google Scholar 

  17. Hardung V (1953) Vergleichende Messungen der dynamischen Elastizität und Viskosität von Blutgefäßen, Kautschuk und synthetischen Elastomeren. Helv Physiol Pharmacol Acta 11:194–211

    Google Scholar 

  18. Hardung V (1970) Dynamische Elastizität und innere Reibung muskulärer Blutgefäße bei verschiedener durch Dehnung und tonische Kontraktionen hervorgerufener Wandspannung. Arch Kreisl Forsch 61:83–100

    Google Scholar 

  19. Kapal E (1954) Die elastischen Eigenschaften der Aortenwand sowie des elastischen und kollagenen Bindegewebes bei frequenten zyklischen Beanspruchungen. Z Biol 107:347–404

    Google Scholar 

  20. Kenner Th (1979) Ursachen und Folgen der Änderungen der Gefäßelastizität für die Gefäßwand. In: Ehringer H, Betz E, Bollinger A, Deutsch E (eds) Gefäßwand — Rezidivprophylaxe — Raynaud-Syndrom. Witzstrock, Baden-Baden Köln New York, pp 17–22

    Google Scholar 

  21. Lawton RW (1955) Measurements on the elasticity and damping of isolated aortic strips of the dog. Circ Res 3:403–408

    Google Scholar 

  22. Learoyd BM, Taylor MG (1966) Alterations with age in the viscoclastic properties of human arterial walls. Circ Res 18:278–292

    Google Scholar 

  23. Minns RJ, Soden PD, Jackson DS (1973) The role of fibrous components and ground substance in mechanical properties of biological tissues. J Biomech 6:153–165

    Google Scholar 

  24. Murphy RA, Seidel CL (1976) Chemomechanical transduction in vascular smooth muscle. In: Bevan J, Burnstock G, Johansson B, Maxwell RA, Nedergaard OA (eds) Vascular neuroeffector mechanisms. Karger, Basel, pp 47–57

    Google Scholar 

  25. Patel DJ, Vaishnav RN (1972) The rheology of large blood vessels. In: Bergel DH (ed) Cardiovascular fluid dynamics, vol II. Academic Press, London New York, pp 1–64

    Google Scholar 

  26. Patel DJ, Janicki JS, Vaishnav RN, Young JT (1973) Dynamic anisotropic viscoelastic properties of the aorta in living dogs. Circ Res 32:93–107

    Google Scholar 

  27. Remington JW (1955) Hysteresis loop behaviour of the aorta and other extensible tissues. Am J Physiol 180:83–95

    Google Scholar 

  28. Schabert A, Bauer RD, Busse R (1980) Photoelectric device for the recording of diameter changes of opaque and transparent blood vessels in vitro. Pflügers Arch 385:239–242

    Google Scholar 

  29. Siegman MJ, Butler TM, Mooers SU, Davies RE (1976) Calcium-dependent resistance to stretch and stress relaxation in resting smooth muscles. Am J Physiol 231:1501–1508

    Google Scholar 

  30. Wetterer E, Kenner Th (1968) Grundlagen der Dynamik des Arterienpulses. Springer, Berlin Heidelberg New York

    Google Scholar 

  31. Wolinsky H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20:99–111

    Google Scholar 

  32. Wurzel M, Cowper GR, McCook JM (1970) Smooth muscle contraction and viscoelasticity of arterial wall. Can J Physiol Pharmacol 48:510–523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (Bu 436/1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busse, R., Bauer, R.D., Sattler, T. et al. Dependence of elastic and viscous properties of elastic arteries on circumferential wall stress at two different smooth muscle tones. Pflugers Arch. 390, 113–119 (1981). https://doi.org/10.1007/BF00590192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00590192

Key words

Navigation