Skip to main content

Mechanobiology of Arterial Hypertension

  • Chapter
  • First Online:
Vascular Mechanobiology in Physiology and Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 8))

  • 628 Accesses

Abstract

Enhanced mechanical forces are imposed on small and large vessels in hypertension. The enhanced transmural pressure increases predominantly circumferential wall stress that is returned toward control by adaptive mechanisms such as active constriction and eutrophic remodeling with concomitant increases of wall thickness. However, other hemodynamic, mechanical stresses are enhanced by such adaptive responses. Specifically, wall shear stress rises by pressure-induced constriction in smaller vessels provoking an endothelium-dependent dilation. A fine balance between these two homeostatic mechanisms that control wall stress and wall shear stress determines vascular tone in small resistance vessels which is shifted in hypertension toward higher vascular tone with enhanced peripheral resistance. Wall shear stress equals the frictional pressure loss during blood flow and must be larger to keep downstream capillary pressure stable, in the face of an increased pressure head. In this light, adaptive responses that decrease luminal diameter to control wall stress appear as maladaptive and energy-consuming. In large arteries, wall thickening is also observed in hypertension. However, the main impact of hypertension in large arteries, specifically elastic proximal vessels, is the profound consequence on pulse wave transmission. Pressure distends elastic arteries and consequently changes their capacity to store further volume during cardiac ejection in systole. This capacity depends on distensibility or compliance (the inverse of stiffness) which is decreased solely due to higher pressure. Changes in stiffness attributable to structural changes in the vessel wall are only found in young hypertensive individuals. Nevertheless, pulse wave velocity is largely increased due to the less compliant arteries at the prevailing pressure. This impacts hemodynamics in the pulsatile compartment of the vascular system that is governed by the Moens–Korteweg equation and wave reflections with dramatic consequences on other organs in the long run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JLJ, Jones DW, Materson BJ, Oparil S, Wright JTJ, Roccella EJ (2003) Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42:1206–1252

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139:e56–e528

    Article  PubMed  Google Scholar 

  3. Kokubo Y, Iwashima Y (2015) Higher blood pressure as a risk factor for diseases other than stroke and ischemic heart disease. Hypertension 66:254–259

    Article  CAS  PubMed  Google Scholar 

  4. Humphrey JD, Schwartz MA, Tellides G, Milewicz DM (2015) Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res 116:1448–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Humphrey JD (2008) Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52:195–200

    Article  CAS  PubMed  Google Scholar 

  6. Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89:957–989

    Article  CAS  PubMed  Google Scholar 

  7. Davis MJ (2012) Perspective: physiological role(s) of the vascular myogenic response. Microcirculation 19:99–114

    Article  CAS  PubMed  Google Scholar 

  8. Busse R, Fleming I (1998) Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. J Vasc Res 35:73–84

    Article  CAS  PubMed  Google Scholar 

  9. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560

    Article  CAS  PubMed  Google Scholar 

  10. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  CAS  PubMed  Google Scholar 

  11. Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259:381–392

    Article  CAS  PubMed  Google Scholar 

  12. Lemarie CA, Tharaux PL, Lehoux S (2010) Extracellular matrix alterations in hypertensive vascular remodeling. J Mol Cell Cardiol 48:433–439

    Article  CAS  PubMed  Google Scholar 

  13. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE (2018) Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension. Arterioscler Thromb Vasc Biol 38:1969–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lacolley P, Regnault V, Segers P, Laurent S (2017) Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev 97:1555–1617

    Article  CAS  PubMed  Google Scholar 

  16. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Article  CAS  PubMed  Google Scholar 

  17. Bayliss WM (1902) On the local reaction of the arterial wall to changes of internal pressure. J Physiol 28:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez-Lemus LA, Wu X, Wilson E, Hill MA, Davis GE, Davis MJ, Meininger GA (2003) Integrins as unique receptors for vascular control. J Vasc Res 40:211–233

    Article  CAS  PubMed  Google Scholar 

  19. Borgstrom P, Gestrelius S (1987) Integrated myogenic and metabolic control of vascular tone in skeletal muscle during autoregulation of blood flow. Microvasc Res 33:353–376

    Article  CAS  PubMed  Google Scholar 

  20. D’Angelo G, Meininger GA (1994) Transduction mechanisms involved in the regulation of myogenic activity. Hypertension 23:1096–1105

    Article  PubMed  Google Scholar 

  21. Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    Article  CAS  PubMed  Google Scholar 

  22. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Davis GE, Hill MA, Meininger GA (2001) Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol 280:H1427–H1433

    Article  CAS  PubMed  Google Scholar 

  23. Hill MA, Zou H, Potocnik SJ, Meininger GA, Davis MJ (2001) Signal transduction in smooth muscle – Invited review: Arteriolar smooth muscle mechanotransduction: Ca2+ signaling pathways underlying myogenic reactivity. J Appl Physiol 91:973–983

    Article  CAS  PubMed  Google Scholar 

  24. Sharif-Naeini R, Dedman A, Folgering JHA, Duprat F, Patel A, Nilius B, Honore E (2008) TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 456:529–540

    Article  CAS  PubMed  Google Scholar 

  25. Schubert R, Lidington D, Bolz SS (2008) The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res 77:8–18

    CAS  PubMed  Google Scholar 

  26. Lidington D, Schubert R, Bolz SS (2013) Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness. Cardiovasc Res 97:404–412

    Article  CAS  PubMed  Google Scholar 

  27. Earley S, Brayden JE (2015) Transient receptor potential channels in the vasculature. Physiol Rev 95:645–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mederos Y, Schnitzler M, Storch U, Gudermann T (2016) Mechanosensitive Gq/11 protein-coupled receptors mediate myogenic vasoconstriction. Microcirculation 23:621–625

    Article  CAS  Google Scholar 

  29. Smulyan H, Mookherjee S, Safar ME (2016) The two faces of hypertension: role of aortic stiffness. J Am Soc Hypertens 10:175–183

    Article  PubMed  Google Scholar 

  30. Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44

    Article  CAS  PubMed  Google Scholar 

  31. Beyer AM, Gutterman DD (2012) Regulation of the human coronary microcirculation. J Mol Cell Cardiol 52:814–821

    Article  CAS  PubMed  Google Scholar 

  32. Green DJ, Dawson EA, Groenewoud HMM, Jones H, Thijssen DHJ (2014) Is flow-mediated dilation nitric oxide mediated?: A meta-analysis. Hypertension 63:376–382

    Article  CAS  PubMed  Google Scholar 

  33. Hecker M, Mulsch A, Bassenge E, Busse R (1993) Vasoconstriction and increased flow – two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol 265:H828–H833

    CAS  PubMed  Google Scholar 

  34. Kurjiaka DT, Segal SS (1996) Autoregulation during pressor response elevates wall shear rate in arterioles. J Appl Physiol 80:598–604

    Article  CAS  PubMed  Google Scholar 

  35. Thorin-Trescases N, Bevan JA (1998) High levels of myogenic tone antagonize the dilator response to flow of small rabbit cerebral arteries. Stroke 29:1194–1200

    Article  CAS  PubMed  Google Scholar 

  36. de Wit C, Jahrbeck B, Schafer C, Bolz SS, Pohl U (1998) Nitric oxide opposes myogenic pressure responses predominantly in large arterioles in vivo. Hypertension 31:787–794

    Article  PubMed  Google Scholar 

  37. Koller A (2002) Signaling pathways of mechanotransduction in arteriolar endothelium and smooth muscle cells in hypertension. Microcirculation 9:277–294

    Article  CAS  PubMed  Google Scholar 

  38. Muller JM, Davis MJ, Chilian WM (1996) Integrated regulation of pressure and flow in the coronary microcirculation. Cardiovasc Res 32:668–678

    Article  CAS  PubMed  Google Scholar 

  39. Harrigan TP (1997) Regulatory interaction between myogenic and shear-sensitive arterial segments: conditions for stable steady states. Ann Biomed Eng 25:635–643

    Article  CAS  PubMed  Google Scholar 

  40. Frisbee JC (2002) Regulation of in situ skeletal muscle arteriolar tone: interactions between two parameters. Microcirculation 9:443–462

    CAS  PubMed  Google Scholar 

  41. Carlson BE, Arciero JC, Secomb TW (2008) Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol 295:H1572–H1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pohl U, de Wit C (1999) A unique role of NO in the control of blood flow. News Physiol Sci 14:74–80

    CAS  PubMed  Google Scholar 

  43. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  CAS  PubMed  Google Scholar 

  44. Falloon BJ, Bund SJ, Tulip JR, Heagerty AM (1993) In vitro perfusion studies of resistance artery function in genetic hypertension. Hypertension 22:486–495

    Article  CAS  PubMed  Google Scholar 

  45. Shimbo D, Muntner P, Mann D, Viera AJ, Homma S, Polak JF, Barr RG, Herrington D, Shea S (2010) Endothelial dysfunction and the risk of hypertension: the multi-ethnic study of atherosclerosis. Hypertension 55:1210–1216

    Article  CAS  PubMed  Google Scholar 

  46. Sonkusare SK, Dalsgaard T, Bonev AD, Hill-Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT (2014) AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci Signal 7:ra66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Greaney JL, Kutz JL, Shank SW, Jandu S, Santhanam L, Alexander LM (2017) Impaired hydrogen sulfide-mediated vasodilation contributes to microvascular endothelial dysfunction in hypertensive adults. Hypertension 69:902–909

    Article  CAS  PubMed  Google Scholar 

  48. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, Iwamoto A, Kajikawa M, Matsumoto T, Oda N, Kishimoto S, Matsui S, Hashimoto H, Aibara Y, Yusoff FBM, Hidaka T, Kihara Y, Chayama K, Noma K, Nakashima A, Goto C, Tomiyama H, Takase B, Kohro T, Suzuki T, Ishizu T, Ueda S, Yamazaki T, Furumoto T, Kario K, Inoue T, Koba S, Watanabe K, Takemoto Y, Hano T, Sata M, Ishibashi Y, Node K, Maemura K, Ohya Y, Furukawa T, Ito H, Ikeda H, Yamashina A, Higashi Y (2017) Endothelial function is impaired in patients receiving antihypertensive drug treatment regardless of blood pressure level: FMD-J Study (Flow-Mediated Dilation Japan). Hypertension 70:790–797

    Article  CAS  PubMed  Google Scholar 

  49. Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC (2017) Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol (Oxf) 219:22–96

    Article  CAS  Google Scholar 

  50. Seals DR, Brunt VE, Rossman MJ (2018) Keynote lecture: strategies for optimal cardiovascular aging. Am J Physiol Heart Circ Physiol 315:H183–H188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Donato AJ, Machin DR, Lesniewski LA (2018) Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res 123:825–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fulop T, Jebelovszki E, Erdei N, Szerafin T, Forster T, Edes I, Koller A, Bagi Z (2007) Adaptation of vasomotor function of human coronary arterioles to the simultaneous presence of obesity and hypertension. Arterioscler Thromb Vasc Biol 27:2348–2354

    Article  CAS  PubMed  Google Scholar 

  53. Beyer AM, Durand MJ, Hockenberry J, Gamblin TC, Phillips SA, Gutterman DD (2014) An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. Am J Physiol Heart Circ Physiol 307:H1587–H1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilson C, Zhang X, Buckley C, Heathcote HR, Lee MD, McCarron JG (2019) Increased vascular contractility in hypertension results from impaired endothelial calcium signaling. Hypertension 74:1200–1214

    Article  CAS  PubMed  Google Scholar 

  55. Dora KA, Doyle MP, Duling BR (1997) Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci U S A 94:6529–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Isakson BE, Ramos SI, Duling BR (2007) Ca2+ and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. Circ Res 100:246–254

    Article  CAS  PubMed  Google Scholar 

  57. Garland CJ, Bagher P, Powell C, Ye X, Lemmey HAL, Borysova L, Dora KA (2017) Voltage-dependent Ca(2+) entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles. Sci Signal 10:eaal3806

    Article  PubMed  CAS  Google Scholar 

  58. Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62:347–504

    Article  CAS  PubMed  Google Scholar 

  59. Prewitt RL, Rice DC, Dobrian AD (2002) Adaptation of resistance arteries to increases in pressure. Microcirculation 9:295–304

    Article  PubMed  Google Scholar 

  60. Heerkens EHJ, Izzard AS, Heagerty AM (2007) Integrins, vascular remodeling, and hypertension. Hypertension 49:1–4

    Article  CAS  PubMed  Google Scholar 

  61. Agabiti-Rosei E, Heagerty AM, Rizzoni D (2009) Effects of antihypertensive treatment on small artery remodelling. J Hypertens 27:1107–1114

    Article  CAS  PubMed  Google Scholar 

  62. Heagerty AM, Heerkens EH, Izzard AS (2010) Small artery structure and function in hypertension. J Cell Mol Med 14:1037–1043

    PubMed  PubMed Central  Google Scholar 

  63. Mulvany MJ (2012) Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol 110:49–55

    Article  CAS  PubMed  Google Scholar 

  64. Laurent S, Boutouyrie P (2015) The structural factor of hypertension: large and small artery alterations. Circ Res 116:1007–1021

    Article  CAS  PubMed  Google Scholar 

  65. Pires PW, Jackson WF, Dorrance AM (2015) Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol 309:H127–H136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao YJ, Yang LF, Stead S, Lee RMKW (2008) Flow-induced vascular remodeling in the mesenteric artery of spontaneously hypertensive rats. Can J Physiol Pharmacol 86:737–744

    Article  CAS  PubMed  Google Scholar 

  67. van den Akker J, Schoorl MJC, Bakker ENTP, Vanbavel E (2010) Small artery remodeling: current concepts and questions. J Vasc Res 47:183–202

    Article  PubMed  Google Scholar 

  68. Rosei EA, Rizzoni D (2010) Small artery remodelling in diabetes. J Cell Mol Med 14:1030–1036

    PubMed  PubMed Central  Google Scholar 

  69. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  PubMed  Google Scholar 

  70. Schiffrin EL, Touyz RM (2004) From bedside to bench to bedside: role of renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol 287:H435–H446

    Article  CAS  PubMed  Google Scholar 

  71. Intengan HD, Thibault G, Li JS, Schiffrin EL (1999) Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 100:2267–2275

    Article  CAS  PubMed  Google Scholar 

  72. Intengan HD, Deng LY, Li JS, Schiffrin EL (1999) Mechanics and composition of human subcutaneous resistance arteries in essential hypertension. Hypertension 33:569–574

    Article  CAS  PubMed  Google Scholar 

  73. Intengan HD, Schiffrin EL (2000) Structure and mechanical properties of resistance arteries in hypertension – role of adhesion molecules and extracellular matrix determinants. Hypertension 36:312–318

    Article  CAS  PubMed  Google Scholar 

  74. Bakker ENTP, Buus CL, VanBavel E, Mulvany MJ (2004) Activation of resistance arteries with endothelin-1: from vasoconstriction to functional adaptation and remodeling. J Vasc Res 41:174–182

    Article  CAS  PubMed  Google Scholar 

  75. Bakker ENTP, van der Meulen ET, van den Berg BM, Everts V, Spaan JAE, VanBavel E (2002) Inward remodeling follows chronic vasoconstriction in isolated resistance arteries. J Vasc Res 39:12–20

    Article  CAS  PubMed  Google Scholar 

  76. Bakker ENTP, Matlung HL, Bonta P, de Vries CJ, van Rooijen N, Vanbavel E (2008) Blood flow-dependent arterial remodelling is facilitated by inflammation but directed by vascular tone. Cardiovasc Res 78:341–348

    Article  CAS  PubMed  Google Scholar 

  77. Schiffrin EL, Park JB, Intengan HD, Touyz RM (2000) Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 101:1653–1659

    Article  CAS  PubMed  Google Scholar 

  78. Li JS, Sharifi AM, Schiffrin EL (1997) Effect of AT(1) angiotensin-receptor blockade on structure and function of small arteries in SHR. J Cardiovasc Pharmacol 30:75–83

    Article  CAS  PubMed  Google Scholar 

  79. Sorop O, Bakker ENTP, Pistea A, Spaan JAE, VanBavel E (2006) Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels. Am J Physiol Heart Circ Physiol 291:H1236–H1245

    Article  CAS  PubMed  Google Scholar 

  80. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38:581–587

    Article  CAS  PubMed  Google Scholar 

  81. Martinez-Lemus LA, Hill MA, Meininger GA (2009) The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 24:45–57

    Google Scholar 

  82. Tuna BG, Bakker ENTP, VanBavel E (2012) Smooth muscle biomechanics and plasticity: relevance for vascular calibre and remodelling. Basic Clin Pharmacol Toxicol 110:35–41

    Article  CAS  PubMed  Google Scholar 

  83. Huelsz-Prince G, Belkin AM, VanBavel E, Bakker ENTP (2013) Activation of extracellular transglutaminase 2 by mechanical force in the arterial wall. J Vasc Res 50:383–395

    Article  CAS  PubMed  Google Scholar 

  84. Isnard RN, Pannier BM, Laurent S, London GM, Diebold B, Safar ME (1989) Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: a noninvasive study. J Am Coll Cardiol 13:399–405

    Article  CAS  PubMed  Google Scholar 

  85. Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME (1993) Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb 13:90–97

    Article  CAS  PubMed  Google Scholar 

  86. Laurent S, Girerd X, Mourad JJ, Lacolley P, Beck L, Boutouyrie P, Mignot JP, Safar M (1994) Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension. Arterioscler Thromb 14:1223–1231

    Article  CAS  PubMed  Google Scholar 

  87. Laurent S, Caviezel B, Beck L, Girerd X, Billaud E, Boutouyrie P, Hoeks A, Safar M (1994) Carotid artery distensibility and distending pressure in hypertensive humans. Hypertension 23:878–883

    Article  CAS  PubMed  Google Scholar 

  88. Milan A, Tosello F, Caserta M, Naso D, Puglisi E, Magnino C, Comoglio C, Rabbia F, Mulatero P, Veglio F (2011) Aortic size index enlargement is associated with central hemodynamics in essential hypertension. Hypertens Res 34:126–132

    Article  PubMed  Google Scholar 

  89. Duca L, Blaise S, Romier B, Laffargue M, Gayral S, El Btaouri H, Kawecki C, Guillot A, Martiny L, Debelle L, Maurice P (2016) Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc Res 110:298–308

    Article  CAS  PubMed  Google Scholar 

  90. Boutouyrie P, Bussy C, Lacolley P, Girerd X, Laloux B, Laurent S (1999) Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 100:1387–1393

    Article  CAS  PubMed  Google Scholar 

  91. O’Rourke M (1990) Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 15:339–347

    Article  PubMed  Google Scholar 

  92. Sherratt MJ (2009) Tissue elasticity and the ageing elastic fibre. Age (Dordr) 31:305–325

    Article  CAS  Google Scholar 

  93. Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lehoux S, Tedgui A (2003) Cellular mechanics and gene expression in blood vessels. J Biomech 36:631–643

    Article  PubMed  Google Scholar 

  95. Dinardo CL, Venturini G, Zhou EH, Watanabe IS, Campos LCG, Dariolli R, da Motta-Leal-Filho JM, Carvalho VM, Cardozo KHM, Krieger JE, Alencar AM, Pereira AC (2014) Variation of mechanical properties and quantitative proteomics of VSMC along the arterial tree. Am J Physiol Heart Circ Physiol 306:H505–H516

    Article  CAS  PubMed  Google Scholar 

  96. Cattaruzza M, Lattrich C, Hecker M (2004) Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension 43:726–730

    Article  CAS  PubMed  Google Scholar 

  97. Ghosh S, Kollar B, Nahar T, Suresh Babu S, Wojtowicz A, Sticht C, Gretz N, Wagner AH, Korff T, Hecker M (2015) Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells. J Am Heart Assoc 4:e001712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Pfisterer L, Feldner A, Hecker M, Korff T (2012) Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovasc Res 96:120–129

    Article  CAS  PubMed  Google Scholar 

  99. Bussy C, Boutouyrie P, Lacolley P, Challande P, Laurent S (2000) Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension 35:1049–1054

    Article  CAS  PubMed  Google Scholar 

  100. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    Article  PubMed  Google Scholar 

  101. Safar ME, Levy BI, Struijker-Boudier H (2003) Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107:2864–2869

    Article  PubMed  Google Scholar 

  102. The Reference Values for Arterial Stiffness’ Collaboration X (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 31:2338–2350

    Article  Google Scholar 

  103. Langewouters GJ, Wesseling KH, Goedhard WJ (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 17:425–435

    Article  CAS  PubMed  Google Scholar 

  104. Westenberg JJM, van Poelgeest EP, Steendijk P, Grotenhuis HB, Jukema JW, de Roos A (2012) Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment. J Cardiovasc Magn Reson 14:2

    Article  PubMed  PubMed Central  Google Scholar 

  105. Megerman J, Hasson JE, Warnock DF, L’Italien GJ, Abbott WM (1986) Noninvasive measurements of nonlinear arterial elasticity. Am J Physiol 250:H181–H188

    CAS  PubMed  Google Scholar 

  106. Hayoz D, Rutschmann B, Perret F, Niederberger M, Tardy Y, Mooser V, Nussberger J, Waeber B, Brunner HR (1992) Conduit artery compliance and distensibility are not necessarily reduced in hypertension. Hypertension 20:1–6

    Article  CAS  PubMed  Google Scholar 

  107. Hayashi K, Naiki T (2009) Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J Mech Behav Biomed Mater 2:3–19

    Article  PubMed  Google Scholar 

  108. Merillon JP, Fontenier GJ, Lerallut JF, Jaffrin MY, Motte GA, Genain CP, Gourgon RR (1982) Aortic input impedance in normal man and arterial hypertension: its modification during changes in aortic pressure. Cardiovasc Res 16:646–656

    Article  CAS  PubMed  Google Scholar 

  109. Sehgel NL, Zhu Y, Sun Z, Trzeciakowski JP, Hong Z, Hunter WC, Vatner DE, Meininger GA, Vatner SF (2013) Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension. Am J Physiol Heart Circ Physiol 305:H1281–H1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. London GM, Pannier B (2010) Arterial functions: how to interpret the complex physiology. Nephrol Dial Transplant 25:3815–3823

    Article  PubMed  Google Scholar 

  111. Safar ME, Nilsson PM, Blacher J, Mimran A (2012) Pulse pressure, arterial stiffness, and end-organ damage. Curr Hypertens Rep 14:339–344

    Article  PubMed  Google Scholar 

  112. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB (2014) Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 63:636–646

    Article  PubMed  Google Scholar 

  113. Bruno RM, Cartoni G, Stea F, Armenia S, Bianchini E, Buralli S, Giannarelli C, Taddei S, Ghiadoni L (2017) Carotid and aortic stiffness in essential hypertension and their relation with target organ damage: the CATOD study. J Hypertens 35:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Safar ME, Asmar R, Benetos A, Blacher J, Boutouyrie P, Lacolley P, Laurent S, London G, Pannier B, Protogerou A, Regnault V (2018) Interaction between hypertension and arterial stiffness. Hypertension 72:796–805

    Article  CAS  PubMed  Google Scholar 

  115. Safar ME (2010) Arterial aging–hemodynamic changes and therapeutic options. Nat Rev Cardiol 7:442–449

    Article  PubMed  Google Scholar 

  116. Benetos A, Gautier S, Labat C, Salvi P, Valbusa F, Marino F, Toulza O, Agnoletti D, Zamboni M, Dubail D, Manckoundia P, Rolland Y, Hanon O, Perret-Guillaume C, Lacolley P, Safar ME, Guillemin F (2012) Mortality and cardiovascular events are best predicted by low central/peripheral pulse pressure amplification but not by high blood pressure levels in elderly nursing home subjects: the PARTAGE (Predictive Values of Blood Pressure and Arterial Stiffness in Institutionalized Very Aged Population) study. J Am Coll Cardiol 60:1503–1511

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the German Ministry of Research (BMBF) and the German Centre for Cardiovascular Research (DZHK).

Sources of Funding

Work in my lab is funded by grants from the German Ministry of Research (BMBF) and the German Centre for Cardiovascular Research (DZHK).

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cor de Wit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Wit, C. (2021). Mechanobiology of Arterial Hypertension. In: Hecker, M., Duncker, D.J. (eds) Vascular Mechanobiology in Physiology and Disease. Cardiac and Vascular Biology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-63164-2_10

Download citation

Publish with us

Policies and ethics