Skip to main content
Log in

The quasistatic and dynamic circumferential elastic modulus of the rat tail artery studied at various wall stresses and tones of the vascular smooth muscle

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

In vitro the pressure-volume curves of small segments of the rat tail artery containing 75% smooth muscle were determined in the frequency range 0.018–25 Hz. The segments were held at in-situ lengths of about 6 mm. The vascular smooth tone muscle was influenced by treatment with norepinephrine and papaverine. The circumferential stressσ t was changed by varying the mean transmural pressure. The circumferential elastic modulusE t was calculated from values obtained by the static and dynamic pressure-diameter relations. The formula used is valid for thick-walled, longitudinally constrained vessels and is derived in a theoretical paragraph.

Results and conclusions:

  1. 1.

    The quasistatic circumferential elastic modulus is 105 dynes/cm2 for the smallest stresses considered and increases to 2×106 dynes/cm2, occuring at maximum stress. These values are smaller by a factor of ten than those measured by other authors on large arteries.

  2. 2.

    There is a linear relationship betweenE t andσ t at each frequency range investigated. The moduli observed after treatment with papaverine aregreater than those observed after excitation of the smooth muscle with norepinephrine, the same stress applying in each case.

  3. 3.

    The dynamic elastic modulusE d (real part ofE t ) and the loss modulusω η w (imaginary part ofE t ) are related toσ t and plotted against frequency.E d /σ t increases slightly with frequency; this quotient is far smaller after treatment with norepinephrine than after the application of papaverine. The expressionω η w /σ t shows the well-known frequency dependence and proves to be independent of the smooth muscle tone. Therefore, when the smooth muscle is activated, the relative contribution of the loss modulus to the circumferential elastic modulus is greater than under conditions of relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apter, J. T., Marquez, E.: Correlation of visco-elastic properties of large arteries with microscopic structure. V. Effects of sinusoidal forcing at low and at resonance frequencies. Circulat. Res.22, 393–404 (1968).

    Google Scholar 

  2. Bader, H.: The anatomy and physiology of the vascular wall. In: Handbook of physiology, Sect. 2: Circulation, Vol. II, pp. 865–889. Washington: Amer. Physiol. Soc. 1963.

    Google Scholar 

  3. Bergel, D. H.: The dynamic elastic properties of the arterial wall. J. Physiol. (Lond.)156, 458–469 (1961).

    Google Scholar 

  4. Dobrin, P. B., Doyle, J. M.: Vascular smooth muscle and the anisotropy of dog carotid artery. Circulat. Res.27, 105–119 (1970).

    Google Scholar 

  5. —, Rovick, A. A.: Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Amer. J. Physiol.217, 1644–1651 (1969).

    Google Scholar 

  6. Frank, O.: Die Analyse endlicher Dehnungen und die Elastizität des Kautschuks. Ann. Physik21, 602–608 (1906).

    Google Scholar 

  7. —: Die Elastizität der Blutgefäße. Z. Biol.71, 255–272 (1920).

    Google Scholar 

  8. Hardung, V.: Vergleichende Messungen der dynamischen Elastizität und Viskosität von Blutgefäßen, Kautschuk und synthetischen Elastomeren. Helv. physiol. pharmacol. Acta11, 194–211 (1953).

    Google Scholar 

  9. —: Dynamische Elastizität und innere Reibung muskulärer Blutgefäße bei verschiedener durch Dehnung und tonische Kontraktion hervorgerufener Wandspannung. Arch. Kreisl.-Forsch.61, 81–100 (1970).

    Google Scholar 

  10. Hinke, J. A. M., Wilson, M. L.: A study of elastic properties of a 550-μ arteryin vitro. Amer. J. Physiol.203, 1153–1160 (1962).

    Google Scholar 

  11. Kapal, E.: Die elastischen Eigenschaften der Aortenwand sowie des elastischen und kollagenen Bindegewebes bei frequenten zyklischen Beanspruchungen. Z. Biol.107, 347–404 (1954).

    Google Scholar 

  12. Kenner, Th.: Die Druck-Volumenkurve längsfixierter Arterien und die Bestimmung der Elastizitätsmoduln. Pflügers Arch. ges. Physiol.285, 211–221 (1965).

    Google Scholar 

  13. —: Neue Gesichtspunkte und Experimente zur Beschreibung und Messung der Arterienelastizität. Arch. Kreisl.-Forsch.54, 68–139 (1967).

    Google Scholar 

  14. Laszt, L.: Untersuchungen über die elastischen Eigenschaften der Blutgefäße im Ruhe- und im Kontraktionszustand. Angiologica5, 14–27 (1968).

    Google Scholar 

  15. Levasseur, J. E., Funk, F. G., Patterson, J. L.: Physiological pressure transducer for microhemocirculatory studies. J. appl. Physiol.27, 422–425 (1969).

    Google Scholar 

  16. McDonald, D. A.: Blood flow in arteries. London: E. Arnold 1960.

    Google Scholar 

  17. Patel, D. J., Janicki, J. S., Carew, T. E.: Static anisotropic elastic properties of the aorta in living dogs. Circulat. Res.25, 765–779 (1969).

    Google Scholar 

  18. —, Tucker, W. K., Janicki, J. S.: Dynamic elastic properties of the aorta in radial direction. J. appl. Physiol.28, 578–582 (1970).

    Google Scholar 

  19. Reichel, H., Vonderlage, M.: Der Einfluß steigender Arterenolkonzentration auf die Wandeigenschaften der Aorta. Verh. dtsch. Ges. Kreisl.-Forsch.35, 327–333 (1969).

    Google Scholar 

  20. Remington, J. W.: The physiology of the aorta and major arteries. In: Handbook of physiology, Sect. 2: Circulation, Vol. II pp. 799–838. Washington: Amer. Physiol. Soc. 1963.

    Google Scholar 

  21. Wetterer, E., Kenner, Th.: Grundlagen der Dynamik des Arterienpulses. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  22. Wezler, K., Böger, A.: Die Dynamik des arteriellen Systems. Ergebn. Physiol.41, 291–606 (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, R.D., Pasch, T. The quasistatic and dynamic circumferential elastic modulus of the rat tail artery studied at various wall stresses and tones of the vascular smooth muscle. Pflugers Arch. 330, 335–346 (1971). https://doi.org/10.1007/BF00588585

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00588585

Key words

Navigation