Skip to main content
Log in

Control by insulin of sodium potassium and water excretion by the isolated dog kidney

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Insulin has been shown to decrease sodium, potassium and water excretion by direct action on the kidney. Reduction of sodium excretion is due to enhanced tubular reabsorption as a probable consequence of stimulated active sodium transport. The renal effect of insulin is demonstrated with plasma hormone concentration observable in pathophysiological conditions; it offers therefore a possible explanation for some clinical findings such as the changes in sodium, potassium and water excretion occurring in man after fasting and subsequent glucose feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André, R., Crabbé, J.: Stimulation by insulin of active sodium transport by toad skin: influence of aldosterone and vasopressin. Arch. intern. Physiol. Biochem.73, 538 (1966).

    Google Scholar 

  2. Berson, S. A., Yalow, R. S.: Insulin in blood and insulin antibodies. Amer. J. Med.40, 676 (1966).

    Google Scholar 

  3. Bloom, W. L.: Inhibition of salt excretion by carbohydrates. Arch. intern. Med.109, 26 (1962).

    Google Scholar 

  4. —, Mitchell, W. R.: Salt excretion in fasting patients. Arch. intern. Med.106, 321 (1960).

    Google Scholar 

  5. Bradley, E. W., Lerock, F. R.: Body fluid compartment in obese males: fasting and refeeding. Clin. Res.13, 319 (1965).

    Google Scholar 

  6. Bresler, E. H.: The problem of the volume component of body fluid homeostasis. Amer. J. med. Sci.232, 93 (1956).

    Google Scholar 

  7. Crabbé, J., François, B.: Stimulation par l'insuline du transport actif de sodium à travers les membranes épithéliales du crapaud, Bufo marinus. Ann. Endocr. (Paris)28, 713 (1967).

    Google Scholar 

  8. Cuypers, Y., Nizet, A., Baerten, A.: Technique pour la perfusion de reins isolés de chien avec du sang hépariné. Arch. intern. Physiol. Biochem.72, 245 (1964).

    Google Scholar 

  9. Duncan, DG. G., Cristofori, F. C., James, K. Y., Murthy, M. S. J.: The control of obesity by intermittent fast. Med. Clin. N. Amer.48, 1359 (1964).

    Google Scholar 

  10. François, B., de Gasparo, M., Crabbé, J.: Interaction between isolated amphibian skin and insulin. Arch. internat. Physiol. Biochem.77, 527 (1969).

    Google Scholar 

  11. Gersing, A., Bloom, W. L.: Glucose stimulation of salt retention in patients with aldosterone inhibition. Metabolism11, 329 (1962).

    Google Scholar 

  12. Hales, C. N., Randle, P. J.: Immunoassay of insulin with insulin-antibody precipitate. Biochem. J.88, 137 (1963).

    Google Scholar 

  13. Habsen, E. L., Hørlyck, E., Grønbaek, P., Iversen, N.: Hyperaldosteronism following total fasting in obese subjects. Acta med. scand.182, 65 (1967).

    Google Scholar 

  14. Herrera, F. C., Whittembury, G., Planchart, A.: Effect of insulin on short-circuit current across isolated frog skin in the presence of calcium and magnesium. Biochim. biophys. Acta (Amst.)66, 170 (1963).

    Google Scholar 

  15. Hunter, W. M.: Control of specificity in the radioimmunoassay. 5. Protein and Polypeptide hormones. Excerpta Medica Foundation, International Congress Series, n° 161, Amsterdam 1968.

  16. Kolanowski, J., Pizarro, M.A., de Gasparo, M., Desmecht, P., Harvengt, C., Crabbé, J.: Influence of fasting on adrenocortical and pancreatic islet response to glucose loads in the obese. Europ. J. clin. Invest.1, 25 (1970).

    Google Scholar 

  17. Lefebvre, P., Luyckx, A.: Régulation de la sécrétion d'insuline par le pancréas de chien in situ. Journées annuelles de Diabétologie de l'Hôtel Dieu, p. 139. Paris: Flammarion 1969.

    Google Scholar 

  18. Mertz, D. P.: Über die antidiuretische Wirkung von Insulin. Dtsch. Arch. klin. Med.208, 573 (1963).

    Google Scholar 

  19. Miller, J. H., Bogdanoff, M. D.: Antidiuresis associated with administration of insulin. J. appl. Physiol.6, 609 (1954).

    Google Scholar 

  20. Mills, I. H., Osbaldiston, G. W., Craig, G. M., Wise, B. L.: The perfused isolated kidney: control of sodium and water excretion by integration of blood pressure and haematocrit. Congress of Nephrology. Abstracts. Washington: Excerpta Medica Foundation 1966.

    Google Scholar 

  21. Moore, R. D.: Increased electrical potential difference in striated muscle cell. Proc. 9th Ann. Meet. Biophys. Soc. U.S., p. 122 (1965).

  22. Morgan, C. R., Lazarow, A.: Immunoassay of insulin: two-antibody systems. Plasma insulin levels of normal, subdiabetic and diabetic rats. Diabetes12, 115 (1963).

    Google Scholar 

  23. Murdaugh, Jr., H. V., Robinson, R. R., Doyle, E. M.: The mechanism of insulin antidiuresis. J. Lab. clin. Med.53, 569 (1959).

    Google Scholar 

  24. Nizet, A.: Control by plasma potassium concentration of sodium excretion by isolated perfused dog kidney. Pflügers Arch. ges. Physiol.297, 162 (1967).

    Google Scholar 

  25. — Influence of serumalbumin and dextran on sodium and water excretion by the isolated dog kidney. Pflügers Arch. ges. Physiol.301, 7 (1968).

    Google Scholar 

  26. —, Cuypers, Y., Deetjen, P., Kramer, K.: Functional capacity of the isolated perfused dog kidney. Pflügers Arch. ges. Physiol.296, 179 (1967).

    Google Scholar 

  27. —, Godon, J. P., Mahieu, P.: Comparative excretion of isotonic and hypertonic sodium chloride by isolated dog kidney. Arch. intern. Physiol. Biochem.76, 311 (1968).

    Google Scholar 

  28. ———: Kramer, K.: Autonomous response of dog kidney to increased blood pressure with and without saline loading. Pflügers Arch.313, 245 (1969).

    Google Scholar 

  29. Rabkin, R., Colwell, J. A.: The renal uptake and excretion of insulin in the dog. J. Lab. clin. Med.73, 893 (1969).

    Google Scholar 

  30. Rapoport, A., From, G. L., Husdon, H.: Metabolic studies in prolonged fasting. I. Inorganic metabolism and kidney function. Metabolism14, 31 (1965).

    Google Scholar 

  31. Schloeder, F. X., Stinebaugh, B. J.: Studies on the natriuresis of fasting. II. Relationship to acidosis. Metabolism15, 838 (1966).

    Google Scholar 

  32. Vereerstraten, P., De Myttenaere, M.: Effect of raising the transtubular oncotic gradient on sodium excretion in the dog. Pflügers Arch.302, 1 (1968).

    Google Scholar 

  33. Veverbrants, E., Arky, R. A.: Effects of fasting and refeeding. I. Studies on sodium, potassium and water excretion on a constant electrolyte and fluid intake. J. clin. Endocr.29, 55 (1969).

    Google Scholar 

  34. Waugh, W. H., Kubo, I.: Development of an isolated perfused dog kidney with improved function. Amer. J. Physiol.217, 277 (1969).

    Google Scholar 

  35. Wright, H. K., Gann, D. S., Albersten, K.: Effect of glucose on sodium excretion and renal concentrating ability after starvation in man. Metabolism12, 804 (1963).

    Google Scholar 

  36. Zaharko, D. S., Beck, L. V., Blankenbaker, R.: Role of the kidney in the disposal of radioiodinated and non radioiodinated insulin in dogs. Diabetes15, 680 (1966).

    Google Scholar 

  37. Zierler, K. L.: Insulin increases the electrical potential difference between striated muscle cell cytoplasm and surrounding fluid. Amer. J. Physiol.197, 524 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nizet, A., Lefebvre, P. & Crabbé, J. Control by insulin of sodium potassium and water excretion by the isolated dog kidney. Pflugers Arch. 323, 11–20 (1971). https://doi.org/10.1007/BF00586561

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586561

Key-Words

Schlüsselwörter

Navigation