Skip to main content
Log in

Axial heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Intracellular microelectrodes were used to investigate rheogenic Na+(HCO 3 ) n cotransport in different segments of isolated proximal straight tubule (PST) of rabbit kidney. In the first portion (S2 segment) the peritubular cell membrane potentialV b averaged −46.0, SE±1.3 mV (n=20), while in the terminal portion (S3 segment) it averaged −68.3, SE±2.5 mV (n=10). This difference may reflect different modes of anion permeation across the peritubular cell membrane. In S2 segments, sudden 10∶1 reduction of bath HCO 3 concentration caused a fast transient cell depolarization, ΔV b=−45.8, SE±1.2 mV (n=33) as expected from the presence of Na+(HCO 3 ) n contransport. As the puncture site moved further distally, ΔV b declined and gradually changed its time course by superposition of a slower secondary depolarization. In this region the transient cell depolarization could be recuperated by inhibiting the peritubular K+ conductance with Ba2+ (1 mmol/l). In S3 segments, however, the HCO 3 -dependent transient cell depolarization was completely lost both in the absence and presence of Ba2+. In addition, sudden reduction of bath Na+ concentration did not acidify the cell, as it did in the S2 segment. The data indicate that the expression of Na+(HCO 3 ) n cotransport in the peritubular cell membrane gradually diminishes towards the end of the S2 segment and is lost in the S3 segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiba T, Alpern J, Eveloff J, Calamina J, Warnock DG (1986) Electrogenic sodium/bicarbonate contransport in rabbit renal cortical basolateral membrane vesicles. J Clin Invest 78:1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alpern RJ (1985) Mechanism of basolateral membrane H+/OH/HCO 3 transport in the rat proximal convoluted tubule. Gen Physiol 86:613–636

    Article  CAS  Google Scholar 

  3. Alpern RJ, Chambers M (1987) Basolateral membrane Cl/HCO 3 exchange in the rat proximal convoluted tubule. J Gen Physiol 89:581–598

    Article  CAS  PubMed  Google Scholar 

  4. Bello-Reuss E (1982) Electrical properties of the basolateral membrane of the straight portion of rabbit proximal renal tubule. J Physiol (Lond) 326:49–63

    Article  CAS  Google Scholar 

  5. Berry CA, Cogan MG (1981) Influence of peritubular protein on solute absorption in rabbit proximal tubule. J Clin Invest 68:506–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Biagi B, Kubota T, Sohtell M, Giebisch G (1981) Intracellular potentials in rabbit proximal tubules perfused in vitro. Am J Physiol 240:F200-F210

    CAS  PubMed  Google Scholar 

  7. Biagi B, Sohtell M (1986) Electrophysiology of bicarbonate transport in the rabbit proximal tubule. Am J. Physiol 250:F267-F272

    CAS  PubMed  Google Scholar 

  8. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO 3 transport. J Gen Physiol 81:53–94

    Article  CAS  PubMed  Google Scholar 

  9. Brisolla-Diuana A, Amorena C, Malnic G (1985) Transfer of base across the basolateral membrane of cortical tubules of rat kidney. Pflügers Arch 405:209–215

    Article  CAS  PubMed  Google Scholar 

  10. Burckhardt BC, Frömter E (1987) Evidence for OH/H+ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO 3 -free solutions. Pflügers Arch 409:132–137

    Article  CAS  PubMed  Google Scholar 

  11. Burckhardt BC, Sato K, Frömter E (1984) Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflügers Arch 401:34–42

    Article  CAS  PubMed  Google Scholar 

  12. Burg M, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210:1293–1298

    CAS  PubMed  Google Scholar 

  13. Cassola AC, Mollenhauer M, Frömter E (1983) The intracellular chloride activity of rat kidney proximal tubular cells. Pflügers Arch 399:259–265

    Article  CAS  PubMed  Google Scholar 

  14. Edelman A, Bouthier M, Anagnostopoulos T (1981) Chloride distribution in the proximal convoluted tubule of Necturus kidney J Membr Biol 62:7–17

    Article  CAS  PubMed  Google Scholar 

  15. Frömter E, Sato K (1976) Electical events in active H+/HCO 3 transport across rat kidney proximal tubular epithelium. In: Kasbekar DK, Sachs G, Rehm WS (eds) Gastric hydrogen ion secretion. Dekker, New York, pp 382–403

    Google Scholar 

  16. Grassl SM, Aronson PS (1986) Na+/HCO 3 co-transport in basolateral membrane vesicles isolated from rabbit renal cortex. J Biol Chem 261:8778–8783

    CAS  PubMed  Google Scholar 

  17. Greger R, Hampel W (1981) A modified system for in-vitro perfusion of isolated renal tubules. Pflügers Arch 389:175–176

    Article  CAS  PubMed  Google Scholar 

  18. Holmberg C, Kokko JP, Jacobson HR (1981) Determination of chloride and bicarbonate permeabilities in proximal convoluted tubules. Am J Physiol 241:F386-F394

    CAS  PubMed  Google Scholar 

  19. Jentsch TJ, Schill BS, Schwartz P, Matthes H, Keller SK, Wiederholt M (1985) Kidney epithelial cells of monkey origin (BSC-1) express a sodium bicarbonate cotransport. J Biol Chem 260:15554–15560

    CAS  PubMed  Google Scholar 

  20. Jentsch TJ, Janicke I, Sorgenfrei D, Keller SK, Wiederholt M (1986) The regulation of intracellular pH in monkey kidney epithelial cells (BSC-1). J Biol Chem 261:12120–12127

    CAS  PubMed  Google Scholar 

  21. Kaissling B, Kriz W (1979) Structural analysis of the rabbit kidney. Adv Anat Embryol Cell Biol 56:1–123

    CAS  PubMed  Google Scholar 

  22. Kinne-Saffran E, Beauwens R, Kinne R (1982) An ATP-driven proton pump in brush border membranes from rat renal proximal cortex. J Membr Biol 64:67–76

    Article  CAS  PubMed  Google Scholar 

  23. Köhler M, Frömter E (1985) Identification of mitochondriarich cells in unstained vital preparations of epithelia by autofluorescence. Pflügers Arch 403:47–49

    Article  PubMed  Google Scholar 

  24. Kondo Y, Frömter E (1987) Heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney. Pflügers Arch 408:R 45

    Google Scholar 

  25. Lang F, Oberleithner H, Giebisch G (1986) Electrophysiological heterogeneity of proximal convoluted tubules in Amphiuma kidney. Am J Physiol 251:F1063-F1072

    CAS  PubMed  Google Scholar 

  26. Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brushborder membrane vesicles isolated from rat intestine and rat kidney. Biochem J 154:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sasaki S, Shiigai T, Yoshiyama N, Takeuchi J (1987) Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule. Am J Physiol 252:F11-F18

    CAS  PubMed  Google Scholar 

  28. Warnock DG, Burg MB (1977) Urinary acidification: CO2 transport by the rabbit proximal straight tubule. Am J Physiol 232:F20-F25

    CAS  PubMed  Google Scholar 

  29. Woodhall PB, Tisher CC, Simonton CA, Robinson RR (1978) Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules. J Clin Invest G1:1320–1329

    Article  Google Scholar 

  30. Yoshitomi K, Hoshi T (1983) Intracellular Cl activity of the proximal tubule of Triturus kidney: dependence on extracellular ionic composition and trasmembrane potential. Am J Physiol 245:F359-F366

    CAS  PubMed  Google Scholar 

  31. Yoshitomi K, Frömter E (1984) Cell pH of rat renal proximal tubule in vivo and the mechanism of peritubular HCO 3 -exit. Pflügers Arch 402:300–305

    Article  CAS  PubMed  Google Scholar 

  32. Yoshitomi K, Burckhardt BC, Frömter E (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflügers Arch 405:360–366

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, Y., Frömter, E. Axial heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney. Pflugers Arch. 410, 481–486 (1987). https://doi.org/10.1007/BF00586529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586529

Key words

Navigation