Skip to main content
Log in

Acetylcholine contracture and excitation-contraction coupling in denervated rat diaphragm muscle

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Acetylcholine (ACh) contracture of chronically denervated rat diaphragms were studied under different conditions which affect electromechanical coupling.

  1. 1.

    Acetylcholine induced a transient contracture while the membrane potential and the twitch amplitude remained depressed as long as the drug was present.

  2. 2.

    In Tyrode solution with elevated K concentrations, both ACh contractures and twich contractions were diminished or abolished, whereas caffeine was still able to evoke a contracture.

  3. 3.

    In a Ca-free solution, ACh as well as caffeine became ineffective in producing contractures.

  4. 4.

    Manganese depressed both the ACh and caffeine induced contracture, being more effective in the former case.

  5. 5.

    In hypertonic solution and in preparations, in which the T-tubules were disconnected from the plasma membrane by glycerol treatment, acetylcholine failed to initiate contracture, while caffeine could still produce contractures.

These results suggest that ACh induces contracture by release of Ca++ from the sarcoplasmic reticulum, which is caused by the depolarization of the cell membrane, and that caffein acts directly on this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelsson, J., Thesleff, S.: Activation of contractile mechanism in striated muscle. Acta physiol. scand.44, 55–66 (1958)

    Google Scholar 

  • Axelsson, J., Thesleff, S.: A study of super-sensitivity in denervated skeletal muscle. J. Physiol. (Lond.)147, 178–193 (1959)

    Google Scholar 

  • Brody, I. A.: Relaxing factor in denervated muscle: a possible explanation for fibrillations. Amer. J. Physiol.211, 1277–1280 (1960)

    Google Scholar 

  • Ebashi, S., Ebashi, F., Kodama, A.: Troponin as the Ca-receptive protein in the contractile system. J. Biochem.62, 137–138 (1967)

    Google Scholar 

  • Ebashi, S., Lipmann, F.: Adenosin triphosphate linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell. Biol.14, 389–400 (1962)

    Google Scholar 

  • Fatt, P., Ginsborg, B. L.: The ionic requirements for the production of action potential in crustacean muscle fibres. J. Physiol. (Lond.)142, 516–543 (1958)

    Google Scholar 

  • Frank, G. B.: Effects of changes in extracellular calcium concentration in frog skeletal muscle. J. Physiol. (Lond.)151, 518–538 (1960)

    Google Scholar 

  • Frank, G. B.: Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle. J. Physiol. (Lond.)163, 254–268 (1962)

    Google Scholar 

  • Freeman, S. F., Turner, R. J.: Ionic interactions in acetylcholine contraction of the denervated rat diaphragm. Brit. J. Pharmacol.36, 510–522 (1969)

    Google Scholar 

  • Fujino, M., Yamaguchi, T., Suzuki, K.: Glycerol effect and the mechanism linking excitation of the plasma membrane with contraction. Nature (Lond.)192, 1159–1161 (1961)

    Google Scholar 

  • Hagiwara, S., Nakajima, S.: Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine and manganese ions. J. gen. Physiol.49, 793 to 818 (1966)

    Google Scholar 

  • Hodgkin, A. L., Horowicz, P.: The differential action of hypertonic solutions on the twitch and action potential of muscle fibre. J. Physiol. (Lond.)136, 17P-18P (1957)

    Google Scholar 

  • Hodgkin, A. L., Horowicz, P.: Potassium contracture in single muscle fibres. J. Physiol. (Lond.)153, 386–403 (1960)

    Google Scholar 

  • Howarth, J. V.: The behaviour of frog muscle in hypertonic solutions. J. Physiol. (Lond.)144, 167–175 (1958)

    Google Scholar 

  • Howell, J. N.: A lesion of the transvers tubules of skeletal muscle. J. Physiol. (Lond.)201, 515–533 (1969)

    Google Scholar 

  • Howell, J. N., Jenden, D. J.: T-tubules of skeletal muscles. Morphological alterations which interrupt excitation-contraction coupling. Fed. Proc.26, 533 (1967)

    Google Scholar 

  • Jenkinson, D. H., Nicholls, J. G.: Contractures and permeability changes produced by acetylcholine in depolarized denervated muscle. J. Physiol. (Lond.)159, 111–129 (1962)

    Google Scholar 

  • Lorković, H.: Acetylcholine contractures of denervated muscle in sodium-free solutions. Amer. J. Physiol.219, 1496–1504 (1970)

    Google Scholar 

  • Lorković, H.: Antagonism between calcium and monovalent cations in depolarized denervated muscles. Amer. J. Physiol.222, 1429–1434 (1972)

    Google Scholar 

  • Lüllmann, H., Muscholl, E.: Über die Wirkung hypotoner Salzlösungen auf das Rattenzwerchfell. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.,227, 209–214 (1954)

    Google Scholar 

  • Lüllmann, H., Reis, E.: Über den Zusammenhang zwischen Membranpotential und Kalium bzw. Acetylcholikontraktur an chronisch denervierten Rattenzwerchfell. Pflügers Arch. ges. Physiol.294, 113–118 (1967)

    Google Scholar 

  • Miledi, R.: The acetylcholine sensitivity of frog muscle fibres after complete and partial denervation. J. Physiol. (Lond.)151, 1–23 (1960)

    Google Scholar 

  • Nagai, T., Makinose, M., Hasselbach, W.: Der physiologische Erschlaffungsfaktor und die Muskelgrana. Biochim. biophys. Acta (Amst.)43, 223–238 (1960)

    Google Scholar 

  • Nonomura, Y., Hotta, Y., Ohashi, H.: Tetrodotoxin and managanese ions; effects on electrical activity and tension in taenia coli of guinea pig. Sience152, 97–99 (1966)

    Google Scholar 

  • Oota, I., Takauji, M., Nagai, T.: Effects of manganese ions on excitation contraction coupling in frog sartorius muscle. Jap. J. Physiol.22, 379–392 (1972)

    Google Scholar 

  • Portzehl, H. P., Caldwell, P. C., Ruegg, J. C.: The dependence of contraction and relation of muscle fibres from the crab Mia squinado on the internal concentration of free calcium ions. Biochim. biophys. Acta (Amst.)79, 581–591 (1964)

    Google Scholar 

  • Sakai, T., Geffner, E. S., Sandow, A.: Caffeine contracture in muscle with disrupted transverse tubules. Amer. J. Physiol.220, 712–717 (1971)

    Google Scholar 

  • Sandow, A.: Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev.17, 265–320 (1965)

    Google Scholar 

  • Shibata, S.: Effects of Mn++ on Ca45 content and potassium induced contraction of aortic strips. Canad. J. Physiol. Pharmacol.47, 827–829 (1969)

    Google Scholar 

  • Stämpfli, R.: A new method for measuring membrane potential with external electrodes. Experientia (Basel)10, 508 (1954)

    Google Scholar 

  • Weber, A., Herz, R.: The relationship between coffeine contracture of intact muscle and the effect of caffeine on reticulum. J. gen. Physiol.52, 750–759 (1968)

    Google Scholar 

  • Weber, A., Herz, R., Reiss, I.: On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum. J. gen. Physiol.46, 679–702 (1963)

    Google Scholar 

  • Weber, A., Herz, R., Reiss, J.: Role of calcium in contraction and relaxation of muscle. Fed. Proc.23, 896–900 (1964)

    Google Scholar 

  • Yamaguchi, T., Matsushima, F., Fujino, M., Nagai, T.: The excitation-contraction coupling of skeletal muscle and the glycerol effect. Jap. J. Physiol.12, 129–141 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüllmann, H., Sunano, S. Acetylcholine contracture and excitation-contraction coupling in denervated rat diaphragm muscle. Pflugers Arch. 342, 271–282 (1973). https://doi.org/10.1007/BF00586099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586099

Key words

Navigation