Skip to main content
Log in

Kinetische Studien derd-Glucoseresorption im proximalen Konvolut der Rattenniere

Kinetic study of the local active transport ofd-glucose in the proximal convoluted tubule of rat kidney

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The proximal convoluted tubule of rat kidney was continuously perfused with a steady state solution containing 0.5 to 2.0 mM ofd-glucose. The gradual decrease of intraluminald-glucose concentration was investigated with repeated collections of perfusate from the same tubule whereby the sequence of punctures proceeded towards the site of perfusion. The rate ofd-glucose transport per unit area decreased with decreasing intraluminald-glucose concentration. This relationship could be expressed by a two parameter system corresponding to the Michaelis-Menten equation. It was found that the local maximal transport rateV max equals 6×10−10 mol×cm−2×sec−1 andK m equals 0.6 mM.

Our data on active resorption and passive permeability ofd-glucose in the proximal convolution have been subjected to computer analysis. The sum of both components ofd-glucose transport alone as measured under the condition of zero netflux of sodium chloride and water did not match the amount of net glucose transport found for the whole kidney under free-flow-conditions.

Zusammenfassung

Proximale Konvolute von Rattennieren wurden bei fehlendem Nettofluß von Natriumionen und Wasser kontinuierlich mit Lösungen perfundiert, die eined-Glucosekonzentration zwischen 0,5 und 2,0 mmol/l enthielten. Der Abfall der intraluminalend-Glucosekonzentration entlang eines Konvolutes wurde durch Absaugen der perfundierten Lösung in abnehmender Entfernung von der Perfusionsstelle verfolgt.

Die pro innere Tubulusoberfläche und Zeit transportierted-Glucosemenge wird mit Abnahme der intraluminalen Glucosekonzentration kleiner. Dieses Verhalten läßt sich durch eine 2-parametrige Gleichung analog der Michealis-Menten-Kinetik beschreiben. Es errechnet sich eine maximale Transportrate,V max, von 6 · 10−10 mol · cm−2 · sec−1 und eine Halbsättigungskonzentration,K m, von 0,6 mmol/l.

Die so beschriebene aktive Resorption und die von uns gefundene passive Permeabilität des proximalen Konvolutes fürd-Glucose reichen, nach angestellten Computerberechnungen zu schließen, allein nicht aus, um den Nettoglucosetransport der Gesamtniere unter Freiflußbedingungen quantitativ zu beschreiben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Barthelmai, W., u.R. Czok: Enzymatische Bestimmungen der Glucose in Blut, Liquor und Harn. Klin. Wschr.40, 585–589 (1962).

    Google Scholar 

  2. Baumann, K., andK. C. Huang: Micropuncture and microperfusion study ofl-Glucose secretion in rat kidney. Pflügers Arch.305, 155–166 (1969).

    Google Scholar 

  3. Baumann, K., K. Loeschke, F. Papavassiliou u.K. J. Ullrich: Lokales Transportmaximum derd-Glucose im proximalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.300, R 25 (1968).

    Google Scholar 

  4. Bihler, I., andR. K. Crane: Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine. Biochim. biophys. Acta (Amst.)59, 78–93 (1962).

    Google Scholar 

  5. Bobinski, H., andW. D. Stein: Isolation of a glucosebinding component from human erythrocyte membranes. Nature (Lond.)211, 1366–1368 (1966).

    Google Scholar 

  6. Bradley, S. E., J. H. Laragh, H. O. Wheeler, M. MacDowell, andJ. Oliver: Correlation of structure and function in the handling of glucose by the nephrons of the canine kidney. J. clin. Invest.40, 1113 (1961).

    Google Scholar 

  7. Burgen, A. S. V.: A theoretical treatment of glucose reabsorption in the kidney. Canad. J. Biochem.34, 466–474 (1956).

    Google Scholar 

  8. Crane, R. K.: Studies on the mechanism of the intestinal absorption of sugars. III. Mutual inhibition in vitro between some actively transported sugars. Biochim. biophys. Acta (Amst.)45, 477–482 (1960).

    Google Scholar 

  9. —: Intestinal absorption of sugars. Physiol. Rev.40, 789–825 (1960).

    Google Scholar 

  10. —,G. Forstner, andA. Eichholz: Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent michaelis constants for intestinal sugar transport, in vitro. Biochim. biophys. Acta (Amst.)109, 467–477 (1965).

    Google Scholar 

  11. Csáky, T. Z.: Significance of sodium ions in active intestinal transport of nonelectrolytes. Amer. J. Physiol.201, 999–1001 (1961).

    Google Scholar 

  12. —: A possible link between active transport of electrolytes and nonelectrolytes. Fed. Proc.22, 3–7 (1963).

    Google Scholar 

  13. —,H. G. Hartzog III, andG. W. Fernald: Effect of digitalis on active intestinal sugar transport. Amer. J. Physiol.200, 459–460 (1961).

    Google Scholar 

  14. —, andL. Zollicoffer: Ionic effect on intestinal transport of glucose in the rat. Amer. J. Physiol.198, 1056–1058 (1960).

    Google Scholar 

  15. Deetjen, P., andJ. W. Boylan: Glucose reabsorption in the rat kidney. Microperfusion studies. Pflügers Arch. ges. Physiol.299, 19–29 (1968).

    Google Scholar 

  16. Dempster, W. J., M. G. Eggleton, andS. Shuster: The effect of hypertonic infusions on glomerular filtration rate and glucose reabsorption in the kidney of the dog. J. Physiol. (Lond.)132, 213–224 (1956).

    Google Scholar 

  17. Dowd, J. E., andD. S. Riggs: A comparison of estimates of Michaelis-Menten Kinetic constants from various linear transformations. J. biol. Chem.240, 863–869 (1965).

    Google Scholar 

  18. Fisher, R. B., andD. S. Parsons: Glucose movements across the wall of the rat small instestine. J. Physiol. (Lond.)119, 210–223 (1953).

    Google Scholar 

  19. Frömter, E., u.U. Hegel: Transtubuläre Potentialdifferenzen an proximalen und distalen Tubuli der Rattenniere. Pflügers Arch. ges. Physiol.291, 107–120 (1966).

    Google Scholar 

  20. Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336–356 (1963).

    Google Scholar 

  21. Handley, C. A., R. B. Sigafoos, andM. LaForge: Proportional changes in renal tubular reabsorption of dextrose and excretion of p-aminohippurate with changes in glomerular filtration. Amer. J. Physiol.159, 175–180 (1949).

    Google Scholar 

  22. Harrison, H. E., andH. C. Harrison: Sodium, potassium, and intestinal transport of glucose, 1-tyrosine, phosphate, and calcium. Amer. J. Physiol.205, 107–110 (1963).

    Google Scholar 

  23. Kashgarian, M., H. Stöckle, C. W. Gottschalk, andK. J. Ullrich: Transtubular elektrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (diabetes insipidus). Pflügers Arch. ges. Physiol.277, 89–106 (1963).

    Google Scholar 

  24. Khuri, R. N., W. J. Flanigan, D. E. Oken, andA. K. Solomon: Influence of electrolytes on glucose absorption in necturus kidney proximal tubules. Fed. Proc.25, 899–902 (1966).

    Google Scholar 

  25. Kleinzeller, A., andA. Kotyk: Cations and transport of galactose in kidneycortex slices. Biochim. biophys. Acta (Amst.)54, 367–369 (1961).

    Google Scholar 

  26. Lauterbach, F.: Beziehungen zwischen enteraler Resorption aktiv transportierter sowie diffundierender Substanzen und Konzentration sowie Transport von Na+-Ionen. Biochim. biophys. Acta (Amst.)135, 256–272 (1967).

    Google Scholar 

  27. —: Die Wirkung cardiotoner Steroide auf die enterale Resorption aktiv transportierter und diffundierender Substanzen und auf deren Beziehung zu Na+-Konzentration und Na+-Transport. Biochim. biophys. Acta (Amst.)135, 273–285 (1967).

    Google Scholar 

  28. LeFevre, P. G.: The evidence for active transport of monosaccharides across the human red cell membrane. Symp. Soc. exp. Biol.8, 118–135 (1954).

    Google Scholar 

  29. —, andM. E. LeFevre: The mechanism of glucose transfer into and out of the human red cell. J. gen. Physiol.35, 891–906 (1952).

    Google Scholar 

  30. Levine, M., andW. D. Stein: The kinetic parameters of the monosaccharide transfer system of the human erythrocyte. Biochim. biophys. Acta (Amst.)127, 179–193 (1966).

    Google Scholar 

  31. Loeschke, K., K. Baumann, H. Renschler u.K. J. Ullrich: Differenzierung zwischen aktiver und passiver Komponente desd-Glucosetransports am proximalen Konvolut der Rattenniere. Pflügers Arch.305, 118–138 (1969).

    Google Scholar 

  32. Miller, J. H.: Changes in renal tubular transport maxima associated with renal vasodilation. J. appl. Physiol.6, 129 (1953).

    Google Scholar 

  33. Nelson, R. A., andR. J. Beargie: Relationship between sodium and glucose transport in canine jejunum. Amer. J. Physiol.208, 375–379 (1965).

    Google Scholar 

  34. Ni, T.-G., andP. B. Rehberg: On the mechanism of sugar excretion. I. Glucose. Biochem. J.24, 1039–1046 (1930).

    Google Scholar 

  35. Park, C. R., R. L. Post, C. F. Kalman, J. H., Wright, Jr.,L. H. Johnson, andH. E. Morgan: The transport of glucose and other sugars across cell membrane transports involving insulin. Ciba Colloquia Endocr.9, 240–260 (1956).

    Google Scholar 

  36. Pitesky, I., andJ. H. Last: Effects of seasonal heat stress on glomerular and tubular functions in the dog. Amer. J. Physiol.164, 497–501 (1951).

    Google Scholar 

  37. Riklis, E., andJ. H. Quastel: Effects of cations in sugar absorption by isolated surviving guinea pig intestine. Canad. J. Biochem.36, 347–362 (1958).

    Google Scholar 

  38. Rohde, R., u.P. Deetjen: Die Glucoseresorption in der Rattenniere. Mikropunktionsanalysen bei freiem Fluß. Pflügers Arch.302, 219–232 (1968).

    Google Scholar 

  39. Ruedas, G., u.Ch. Weiss: Die Wirkung von Änderungen der Natriumkonzentration im Perfusionsmedium und von Strophanthin auf die Glucoseresorption der isolierten Rattenniere. Pflügers Arch. ges. Physiol.298, 12–22 (1967).

    Google Scholar 

  40. Sahagian, B. M.: Active glucose uptake by strips of guinea pig intestine; competitive inhibition by phlorizin and phloretin. Canad. J. Biochem.43, 851–858 (1965).

    Google Scholar 

  41. Schmidt, F. H.: Die enzymatische Bestimmung von Glucose und Fructose nebeneinander. Klin. Wschr.39, 1244–1247 (1961).

    Google Scholar 

  42. Schultz, S. G., andR. Zalusky: The interaction between active sodium transport and active sugar transport in the isolated rabbit ileum. Biochim. biophys. Acta (Amst.)71, 503–505 (1963).

    Google Scholar 

  43. ——: Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J. gen. Physiol.47, 1043–1059 (1964).

    Google Scholar 

  44. Shannon, J. A., S. Farber, andL. Troast: The measurement of glucoseT m in the normal dog. Amer. J. Physiol.133, 752–761 (1941).

    Google Scholar 

  45. —, andS. Fisher: The renal tubular reabsorption of glucose in the normal dog. Amer. J. Physiol.122, 765–774 (1938).

    Google Scholar 

  46. Smith, H. W.: The kidney, New York: Oxford 1951.

    Google Scholar 

  47. —,W. Goldring, H. Chasis, H. A. Ranges, andS. E. Bradley: The application of saturation methods to the study of glomerular and tubular function in the human kidney. J. Mt Sinai Hosp.10, 59–108 (1943).

    Google Scholar 

  48. Sonnenberg, H., P. Deetjen u.W. Hampel: Methode zur Durchströmung einzelner nephronabschnitte. Pflügers Arch. ges. Physiol.278, 669–674 (1964).

    Google Scholar 

  49. —,H. Oelert, andK. Baumann: Proximal tubular reabsorption of some organic acids in the rat kidney in vivo. Pflügers Arch. ges. Physiol.286, 171–180 (1965).

    Google Scholar 

  50. Stolte, H., D. Hare, andJ. W. Boylan: Microperfusion study in vivo of fluid and glucose reabsorption in the proximal tubule of the rat kidney (Abstract). Fed. Proc.27, 742 (1968).

    Google Scholar 

  51. Ullrich, K. J., u.H. Hampel: Eine einfache Mikroküvette für Monochromator Zeiss und Beckman Modell DU. Pflügers Arch. ges. Physiol.268, 177–180 (1958).

    Google Scholar 

  52. Van Liew, J. B., P. Deetjen, andJ. W. Boylan: Glucose reabsorption in the rat kidney. Dependence on glomerular filtration. Pflügers Arch. ges. Physiol.295, 232–244 (1967).

    Google Scholar 

  53. Vogel, G.: The importance of Na+ for the renal transport of glucose and para-aminohippuric acid. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.250, 287 (1965).

    Google Scholar 

  54. —, u.W. Kröger: Die Bedeutung des Transportes, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucose- und PAH-Transport. Pflügers Arch. ges. Physiol.288, 342–358 (1966).

    Google Scholar 

  55. —, u.F. Lauterbach: Verknüpfung von renalem Na+- und Glucose-Transport-natriuretische und glykosurische Wirkung von Fursemid. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.253, 90 (1966).

    Google Scholar 

  56. —— u.W. Kröger: Die Bedeutung des Natriums für die renalen Transporte von Glucose und Para-Aminohippursäure. Pflügers Arch. ges. Physiol.283, 151–159 (1965).

    Google Scholar 

  57. —, u.U. Tervooren: Zur Lokalisation der Wirkung kardiotoner Steroide auf verschiedene Transporte in der Niere. Pflügers Arch. ges. Physiol.280, 46–49 (1964).

    Google Scholar 

  58. —— u.I. Stoeckert: Untersuchungen zur Abhängigkeit des renal tubulären Glucose-Transportes vom Ionen-Angebot sowie des Na+-Transportes vom Angebot an Glucose. Pflügers Arch. ges. Physiol.288, 359–368 (1966).

    Google Scholar 

  59. Walker, A. M., andC. L. Hudson: The reabsorption of glucose from the renal tubule in amphibia and the action of phlorizin upon it. Amer. J. Physiol.118, 130–143 (1937).

    Google Scholar 

  60. Wearn, J. T., andA. N. Richards: Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Amer. J. Physiol.71, 209–227 (1924).

    Google Scholar 

  61. Widdas, W. F.: Kinetics of glucose transfer across the human erythrocyte membrane. J. Physiol. (Lond.)120, 23P-24P (1953).

    Google Scholar 

  62. —: Facilitated transfer of hexoses across the human erythrocyte membrane. J. Physiol. (Lond.)125, 163–180 (1954).

    Google Scholar 

  63. Wilbrandt, W.: Secretion and transport of nonelectrolytes. Symp. Soc. exp. Biol.8, 136–162 (1954).

    Google Scholar 

  64. —: Transportsysteme für Zucker. Mod. Probl. Paediat.4, 30–49 (1959).

    Google Scholar 

  65. —: Zuckertransporte, in: Biochemie des aktiven Transports. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  66. —, andT. Rosenberg: The concept of carrier transport and its corollaries in Pharmacology. Pharmacol. Rev.13, 109–183 (1961).

    Google Scholar 

  67. Woolf, L. I., B. L. Goodwin, andC. E. Phelps:T m-limited renal reabsorption and the genetics of renal glucosuria. J. theoret. Biol.11, 10–21 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Auszugsweise vorgetragen auf der Frühjahrstagung der Deutschen Physiologischen Gesellschaft in Mainz 1968 [3].

Mit Unterstützung durch die Deutsche Forschungsgemeinschaft und The National Institutes of Health, Grant-No. 1 RO1 AM 10688-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeschke, K., Baumann, K. & Papavassiliou, F. Kinetische Studien derd-Glucoseresorption im proximalen Konvolut der Rattenniere. Pflugers Arch. 305, 139–154 (1969). https://doi.org/10.1007/BF00585841

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585841

Key-Words

Schlüsselwörter

Navigation