Skip to main content
Log in

Genetic approaches to the study of mitochondrial biogenesis in yeast

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In contrast to most other organisms, the yeastSaccharomyces cerevisiae can survive without functional mitochondria. This ability has been exploited in genetic approaches to the study of mitochondrial biogenesis. In the last two decades, mitochondrial genetics have made major contributions to the identification of genes on the mitochondrial genome, the mapping of these genes and the establishment of structure-function relationships in the products they encode. In parallel, more than 200 complementation groups, corresponding to as many nuclear genes necessary for mitochondrial function or biogenesis have been described. Many of the latter are required for post-transcriptional events in mitochondrial gene expression, including the processing of mitochondrial pre-RNAs, the translation of mitochondrial mRNAs, or the assembly of mitochondrial translation products into the membrane. The aim of this review is to describe the genetic approaches used to unravel the intricacies of mitochondrial biogenesis and to summarize recent insights gained from their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman SH & Tzagoloff A (1990a)ATP10, a yeast nuclear gene required for the assembly of the mitochondrial F1-F0 complex. J. Biol. Chem. 265: 9952–9959

    Google Scholar 

  • Ackerman SH & Tzagoloff A (1990b) Identification of 2 nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. Proc. Natl. Acad. Sci. USA 87: 4986–4990

    Google Scholar 

  • Ahsen U von, Davies J & Schroeder R (1991) Antibiotic inhibition of group I ribozyme function. Nature 353: 368–370

    Google Scholar 

  • Altamura N, Groudinsky O, Dujardin G & Slonimski PP (1992)NAM7 nuclear gene encodes a novel member of a family of helicases with zinc ligand motif and is involved in mitochondrial functions inS. cerevisiae. J. Mol. Biol. (in press)

  • Arcangioli B & Lescure B (1985) Identification of proteins involved in the regulation of yeast iso-1-cytochrome c expression by oxygen. EMBO J. 4: 2627–2633

    Google Scholar 

  • Atencio DP & Yaffe MP (1992)MAS5, a yeast homolog ofDnaJ involved in mitochondrial protein import. Mol. Cell. Biol. 12: 283–291

    Google Scholar 

  • Baldacci G & Bernardi G (1982) Replication origins are associated with transcription initiation sequences in the mitochondrial genome of yeast. EMBO J. 1: 987–994

    Google Scholar 

  • Ben Asher E, Groudinsky O, Dujardin G, Altamura N, Kermorgant M & Slonimski P.P. (1989) Novel class of nuclear genes involved in both mRNA splicing and protein synthesis inSaccharomyces cerevisiae mitochondria. Mol. Gen. Genet. 215: 517–528

    Google Scholar 

  • Benne R & Sloof P (1987) Evolution of the mitochondrial protein synthetic machinery. Biosystems 21: 51–68

    Google Scholar 

  • Blane H & Dujon B (1980) Replicator origins of the yeast mitochondrial DNA responsible for suppressiveness. Proc. Natl. Acad. Sci. USA 77: 3942–3946

    Google Scholar 

  • Blanco L, Bernad A & Salas M (1991) MIP1 DNA polymerase ofS. cerevisiae: structural similarity with theE. coli DNA polymerase I-type enzymes. Nucleic Acids Res. 19: 955

    Google Scholar 

  • Bolotin-Fukuhara M, Faye G & Fukuhara H (1977) Temperature-sensitive respiratory-deficient mitochondrial mutations: isolation and genetic mapping. Mol. Gen. Genet. 152: 295–305

    Google Scholar 

  • Bordonné R, Dirheimer G & Martin RP (1988) Expression of the oxi1 and maturase-related RF1 genes in yeast mitochondria. Curr. Genet. 13: 227–233

    Google Scholar 

  • Bousquet I, Dujardin G, Poyton RO & Slonimski PP (1990) Two group I mitochondrial introns in the cob-box and coxI genes require the sameMRS1/PET157 nuclear gene product for splicing. Curr. Genet. 18: 117–124

    Google Scholar 

  • Bousquet I, Dujardin G & Slonimski PP (1991)ABC1, a novel yeast nuclear gene has a dual function in mitochondria: it suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc1 complex. EMBO J. 10: 2023–2031

    Google Scholar 

  • Bowman S, Ackerman SH, Griffiths DE & Tzagoloff A (1991) Characterization ofATP12, a yeast nuclear gene required for the assembly of the mitochondrial F1-ATPase. J. Biol. Chem. 266: 7517–7523

    Google Scholar 

  • Butow RA & Fox TD (1990) Organelle transformation: shoot first, ask questions later. Trends in Biochem. Sci., 15: 465–468

    Google Scholar 

  • Butow RA, Strausberg RL, Vincent RD, Paulson LD & Perlman PS (1978) Analysis of structural genes on mitochondrial DNA. In: Bacila M, Horecker BL & Stoppani AOM (Eds) Biochemistry and Genetics of Yeast (pp 403–411). Academic Press, New York

    Google Scholar 

  • Butow RA, Docherty R & Parikh VS (1988) A path from mitochondria to the yeast nucleus. Phil. Trans. R. Soc. Lond. B 319: 127–133

    Google Scholar 

  • Carnevali F, Morpurgo G & Tecce G (1969) Cytoplasmic DNA from petite colonies ofSaccharomyces cerevisiae: a hypothesis on the nature of the mutation. Science 163: 1331–1333

    Google Scholar 

  • Chatton B, Walter P, Ebel J-P, Lacroute F & Fasiolo F (1988) The yeastVAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52–57

    Google Scholar 

  • Cech TR (1990) Self-splicing of group I introns. Ann. Rev. Biochem. 59: 543–568

    Google Scholar 

  • Chen J-Y & Martin NC (1988) Biosynthesis of tRNA in yeast mitochondria. An endonuclease is responsible for the 3′-processing of tRNA precursors. J. Biol. Chem. 263: 13677–13682

    Google Scholar 

  • Chodosh LA, Olesen J, Hahn S, Baldwin AS, Guarente L & Sharp PA (1988) A human and yeast CCAAT-binding protein have heterologous subunits that are functionally interchangeable Cell 53: 25–35

    Google Scholar 

  • Cigan AM, Pabich EK, Feng L & Donahue TF (1989) Yeast translation initiation suppressorsui2 encodes the alpha subunit of eukaryotic initiation factor 2 and shares sequence identity with the human alpha subunit. Proc. Natl. Acad. Sci. USA 86: 2784–2788

    Google Scholar 

  • Conrad-Webb H, Perlman PS, Zhu H & Butow RA (1990) The nuclearSuv3-1 mutation affects a variety of post-transcriptional processes in yeast mitochondria. Nucleic Acids Res. 18: 1369–1376

    Google Scholar 

  • Costanzo M, Seaver EC & Fox TD (1986) At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J. 5: 3637–3641

    Google Scholar 

  • Costanzo MC & Fox TD (1988) Specific translational activation by nuclear gene products occurs in the 5′ untranslated leader of a yeast mitochondrial mRNA. Proc. Natl. Acad. Sci. USA 85: 2677–2681

    Google Scholar 

  • Costanzo MC & Fox TD (1990) Control of mitochondrial gene expression inSaccharomyces cerevisiae. Ann. Rev. Genet. 24: 91–113

    Google Scholar 

  • Creusot F, Verdière J, Gaisne M & Slonimski PP (1988) TheCYP1 (HAP1) regulator of oxygen dependent gene expression in yeast. 1. Overall organisation of the protein displays several novel structural motifs. J. Mol. Biol. 204: 263–276

    Google Scholar 

  • Daignan-Fornier B & Bolotin-Fukuhara B (1988) Mutational study of the rRNA in yeast mitochondria: the functional importance of T1696 in the large rRNA gene. Nucleic Acids Res. 16: 9299–9306

    Google Scholar 

  • Daignan-Fornier B, Su I, Contamine V & Bolotin-Fukuhara B (1988) A genetic approach to molecular interactions in theyeast mitochondrial ribosome. In: Tuite M, Picard M & Bolotin-Fukuhara M (Eds) NATO-ASI series, Vol. H14 Genetics of Translation (pp 159–169). Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Daignan-Fornier B & Bolotin-Fukuhara B (1989) Functional exploration of the yeast (S. cerevisiae) genome: use of a mini-Mu transposon to analyze randomly cloned sequences. Yeast 5: 259–269

    Google Scholar 

  • Decoster E, Simon M, Hatat D & Faye G (1990) TheMSS51 gene product is required for translation of theCOX1 mRNA in yeast mitochondria. Mol. Gen. Genet. 224: 111–118

    Google Scholar 

  • Dieckmann CL & Tzagoloff A (1985) Assembly of the mitochondrial membrane system.CBP6, a yeast nuclear gene necessary for the synthesis of cytochrome b. J. Biol. Chem. 260: 1513–1520

    Google Scholar 

  • Dieckmann CL & Mittelmeier TM (1987) Nuclearly-encoded CBP1 interacts with the 5′-end of mitochondrial cytochrome b pre-mRNA. Curr. Genet. 12: 391–397

    Google Scholar 

  • Diffley JFX (1992) Global regulators of chromosome function in yeast. Antonie van Leeuwenhoek 62: 25–33 (this issue)

    Google Scholar 

  • Donahue TD, Cigan AM, Pabich EK & Castilho Valavicius B (1988) Mutations at a Zn(II) finger motif in the yeast eIF-2beta gene alter ribosomal start-site selection during the scanning process. Cell 54: 621–632

    Google Scholar 

  • Dorsman JC, Van Heeswijk WC & Grivell LA (1990) Yeast general transcription factor GFI-sequence requirements for binding to DNA and evolutionary conservation. Nucleic Acids Res. 18: 2769–2776

    Google Scholar 

  • Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Long range control circuits within mitochondria and between nucleus and mitochondria. I. Methodology and Phenomenology of suppressors. Mol. Gen. Genet. 179: 469–482

    Google Scholar 

  • Dujardin G, Jacq C & Slonimski PP (1982) Single base substitution in an intron oxidase gene compensates splicing defects of the cytochrome b gene. Nature 298: 628–632

    Google Scholar 

  • Dujardin G, Labouesse M, Netter P & Slonimski PP (1983) Genetic and biochemical studies of the nuclear suppressorNAM2: extraneous activation of a latent pleiotropic maturase. In: Schweyen RJ, Wolf K & Kaudewitz F (Eds) Mitochondria 1983. Nucleo-Mitochondrial Interactions (pp 233–250). de Gruyter

  • Dujon B (1979) Mutants in a mosaic gene reveals functions for introns. Nature 282: 777–778

    Google Scholar 

  • Dujon B (1981) Mitochondrial genetics and functions. In: Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the YeastSaccharomyces. Life Cycle and Inheritance (pp 505–635). Cold Spring Harbor Laboratory

  • Dujon B (1989) Group I introns as mobile genetic elements: facts and mechanistic speculations-a review. Gene 82: 91–114

    Google Scholar 

  • Elelj-Fridhi N, Pallier C, Zelikson R, Guetari M & Bolotin-Fukuhara M (1991) Mutational studies of the major tRNA region of theS. cerevisiae mitochondrial genome. Curr. Genet. 19: 301–308

    Google Scholar 

  • Ellis SR, Hopper AK & Martin NC (1989) Amino-terminal extension generated from an upstream AUG codon increases the efficiency of mitochondrial import of yeast N2, N2-dimethylguanosine-specific tRNA methyltransferases. Mol. Cell. Biol. 9: 1611–1620

    Google Scholar 

  • Ephrussi B, Margerie-Hottinguer H de & Roman H (1955) Suppressiveness: a new factor in the genetic determinism of the synthesis of respiratory enzymes in yeast. Proc. Natl. Acad. Sci. USA 41: 1065–1071

    Google Scholar 

  • Farrell LE, Trawick JD & Poyton RO (1990) Mitochondrial-nuclear interactions: transcription of nuclear cox genes in yeast is reduced in cells that lack a mitochondrial genome. In: Quagliariello E, Papa S, Palmieri F & Saccone C (Eds) Structure. Function and Biogenesis of Energy Transfer Systems (pp 131–134). Elsevier, Amsterdam

    Google Scholar 

  • Faugeron-Fonty G, Le Van Kim C, Zamaroczy M de, Goursot R & Bernardi G (1984) A comparative study of the ori sequences from the mitochondrial genomes of twenty wild-type yeast strains. Gene 32: 459–473

    Google Scholar 

  • Folley LS & Fox TD (1991) Site-directed mutagenesis of aSaccharomyces cerevisiae mitochondrial translation initiation codon. Genet. 129: 659–668

    Google Scholar 

  • Forsburg SL & Guarente L (1988) Mutational analysis of upstream activation sequence 2 of theCYC1 gene ofSaccharomyces cerevisiae: a HAP2-HAP3-responsive site. Mol. Cell. Biol. 8: 647–654

    Google Scholar 

  • Forsburg SL & Guarente L (1989a) Communication between mitochondria and the nucleus in regulation of cytochrome genes in the yeastSaccharomyces cerevisiae. Ann. Rev. Cell. Biol. 5: 153–180

    Google Scholar 

  • Forsburg SL & Guarente L (1989b) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes & Dev. 3: 1166–1178

    Google Scholar 

  • Foury F (1989) Cloning and sequencing of the nuclear geneMIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J. Biol. Chem. 264: 20552–20560

    Google Scholar 

  • Foury F & Kolodynski J (1983)Pif mutation blocks recombination between mitochondrial r+ and r- genomes having tandemly arrayed repeat units inSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80: 5345–5349

    Google Scholar 

  • Foury F & Van Dyck E (1985) APIF-dependent recombinogenic signal in the mitochondrial DNA of yeast. EMBO J. 4: 3525–3530

    Google Scholar 

  • Foury F & Lahaye A (1987) Cloning and sequencing of thePIF gene involved in repair and recombination of yeast mitochondrial DNA. EMBO J. 6: 1441–1449

    Google Scholar 

  • Fox TD (1986) Nuclear gene products required for translation of specific mitochondrially coded mRNAs in yeast. Trends in Genet. 2: 97–100

    Google Scholar 

  • Fox TD, Sanford JC & McMullin TW (1988) Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc. Nat. Acad. Sci. USA 85: 7288–7292

    Google Scholar 

  • Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, Hedin LO & Costanzo MC (1991) Analysis and manipulation of yeast mitochondrial genes. In: Guthrie C & Fink GR (Eds) Guide to Yeast Genetics and Molecular Biology. Meth. in Enzymol. 194 (pp 149–165) Academic Press, New York

    Google Scholar 

  • Gampel A, Nishikimi M & Tzagoloff A (1989) CBP2 protein promotes in vitro excision of a yeast mitochondrial group I Intron. Mol. Cell. Biol. 9: 5424–5433

    Google Scholar 

  • Genga A, Bianchi L & Foury F (1986) A nuclear mutant ofSaccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity. J. Biol. Chem. 261: 9328–9332

    Google Scholar 

  • Gillman EC, Slusher LB, Martin NC & Hopper AK (1991)MOD5 initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Mol. Cell. Biol. 11: 2382–2390

    Google Scholar 

  • Goguel V, Bailone A, Devoret R & Jacq C (1989) The b14 RNA mitochondrial maturase ofSaccharomyces cerevisiae can stimulate intra-chromosomal recombination inEscherichia coli. Mol. Gen. Genet. 216: 70–74

    Google Scholar 

  • Grivell LA (1989) Nucleo-mitochondrial interactions in mitochondrial biogenesis. Eur. J. Biochem. 182: 477–493

    Google Scholar 

  • Grivell LA & Schweyen RJ (1989) RNA splicing in yeast mitochondria: taking out the twists. Trends in Genet 5: 39–41

    Google Scholar 

  • Grivell LA, Dorsman JC, Gozdzicka-Jozefiak A, van Heeswijk WC & de Winde JH (1990) Generalized growth control of mitochondrial biogenesis in yeast. In: Quagliariello E, Papa S, Palmieri F & Saccone C (Eds) Structure, Function and Biogenesis of Energy Transfer Systems(pp 193–200). Elsevier, Amsterdam

    Google Scholar 

  • Groudinsky O, Dujardin G & Slonimski PP (1981) Long range control circuits within mitochondria and between nucleus and mitochondria. II. Genetic and biochemical analyses of suppressors which selectively alleviate the mitochondrial intron mutations. Mol. Gen. Genet. 184: 493–503

    Google Scholar 

  • Gualerzi CO & Pon CL (1990) Initiation of messenger RNA translation in prokaryotes. Biochem. 29: 5881–5889

    Google Scholar 

  • Haftter P, Mcmullin TW & Fox TD (1990) A genetic link between a messenger RNA-specific translational activator and the translation system in yeast mitochondria. Genet. 125: 495–503

    Google Scholar 

  • Haftter P, McMullin TW & Fox TD (1991) Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator. Genetics 127: 319–326

    Google Scholar 

  • Hensgens LAM, Bonen L, De Haan M, Van der Horst G & Grivell LA (1983) Two intron sequences in yeast mitochondrialCOX1 gene: homology among URF-containing introns and strain-dependent variation in flanking exons. Cell 32: 379–389

    Google Scholar 

  • Herbert CJ, Labouesse M, Dujardin G & Slonimski PP (1988) The NAM2 proteins fromS. cerevisiae andS. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing. EMBO J 7: 473–483

    Google Scholar 

  • Herbert CJ, Ben Asher E, Bousquet I, Dujardin G, Groudinsky O, Kermorgant M, Labouesse M & Slonimski PP (1990) Yeast mitochondrial pre-mRNA splicing: genes involved in both protein synthesis and splicing. In: Quagliariello E, Papa S, Palmieri F & Saccone C (Eds). Structure, Function and Biogenesis of Energy Transfer Systems (pp 201–204). Elsevier, Amsterdam

    Google Scholar 

  • Hollingsworth MJ & Martin NC (1986) RNase P activity in the mitochondria ofSaccharomyces cerevisiae depends on both mitochondrion and nucleus-encoded components. Mol. Cell. Biol. 6: 1058–1064

    Google Scholar 

  • Hopper AK, Furukawa AH, Pham HD & Martin NC (1982) Defects in modification of cytoplasmic and mitochondrial transfer RNAs are caused by single nuclear mutations. Cell 28: 543–550

    Google Scholar 

  • Jang SH & Jaehning JA (1991) The yeast mitochondrial RNA polymerase specificity factor, MTF1, is similar to bacterial s factors. J. Biol. Chem. 266: 22671–22677

    Google Scholar 

  • Julou C, Contamine V, Sor F & Bolotin-Fukuhara M (1984) Mitochondrial ribosomal RNA genes of yeast: their mutations and a common nuclear suppressor. Mol. Gen. Genet. 193: 275–279

    Google Scholar 

  • Kim KS, Pfeifer K, Powell L & Guarente L (1990) Internal deletions in the yeast transcriptional activator HAP1 have opposite effects at two sequence elements. Proc. Natl. Acad. Sci. USA 87: 4524–4528

    Google Scholar 

  • Kittle JDjr, Mohr G, Gianelos JA, Wang H & Lambowitz AM (1991) TheNeurospora mitochondrial tyrosyl-tRNA synthetase is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions. Genes & Dev. 5: 1009–1021

    Google Scholar 

  • Kloeckener-Gruissem B, McEwen JE & Poyton RO (1988) Identification of a third nuclear protein-coding gene required specifically for post-transcriptional expression of theCOX3 gene inSaccharomyces cerevisiae. J. Bacteriol. 170: 1399–1402

    Google Scholar 

  • Koll H, Schmidt C, Wiesenberger G & Schmelzer C (1987) Three nuclear genes suppress a yeast mitochondrial splice defect when present in high copy number. Curr. Genet. 12: 503–509

    Google Scholar 

  • Konopka J & Fields S (1992) The pheromone signal pathway inSaccharomyces cerevisiae. A. v. Leeuwenhoek 62: 95–108 (this issue)

    Google Scholar 

  • Kotylak Z & Slonimski PP (1976) Joint control of cytochromes a and b by a unique mitochondrial DNA region comprising four genetic loci. In: Saccone C & Kroon AM (Eds) The Genetic Function of Mitochondrial DNA(pp 143–154). Elsevier, Amsterdam

    Google Scholar 

  • Kovacova V, Irmlerova J & Kovac L (1968) Oxidative phosphorylation in yeast IV. Combination of a nuclear mutation affecting oxidative phosphorylation with cytoplasmic mutation to respiratory deficiency. Biochim. Biophys. Acta 162: 157–163

    Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. J. Cell Biol. 108: 229–241

    Google Scholar 

  • Kreike J, Schulze M, Ahne F & Lang BF (1987) A yeast nuclear gene,MRS1, involved in mitochondrial RNA splicing: nucleotide sequence and mutational analysis of two overlapping open reading frames on opposite strands. EMBO J 6: 2123–2129

    Google Scholar 

  • Kruszewska A & Slonimski PP (1984) Mitochondrial and nuclear mitoribosomal suppressors that enable misreading of ochre codons in yeast mitochondria. I. Isolation, localization and allelism of suppressors. Curr. Genet. 9: 1–10

    Google Scholar 

  • Lahaye A, Stahl H, Thines-Sempoux D & Foury F (1991) PIF1: a DNA helicase in yeast mitochondria. EMBO J. 10: 997–1007

    Google Scholar 

  • Lambowitz AM & Perlman PS (1990) Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends in Biochem. Sci. 15: 440–444

    Google Scholar 

  • Law RHP, Devenish RJ & Nagley P (1990) Assembly of imported subunit 8 into the ATP synthase complex of isolated yeast mitochondria. Eur. J. Biochem. 188: 421–429

    Google Scholar 

  • Lawson JE & Douglas MG (1988) Separate genes encode functionally equivalent ADP/ATP carrier proteins inSaccharomyces cerevisiae. Isolation and analysis ofAAC2. J. Biol. Chem. 263: 14812–14818

    Google Scholar 

  • Lazowska J, Jacq C & Slonimski PP (1980) Sequence of introns and flanking exons in wild-type andbox3 mutants of cytochromeb reveals an interlaced splicing protein coded by an intron. Cell 22: 333–348

    Google Scholar 

  • Li M, Tzagoloff A, Underbrink-Lyon K & Martin NC (1982) Identification of the paromomycin-resistance mutation in the 15S rRNA gene of yeast mitochondria. J. Biol. Chem. 257: 5921–5928

    Google Scholar 

  • Liao X, Small WC, Srere PA & Butow RA (1991) Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression inSaccharomyces cerevisiae. Mol. Cell. Biol. 11: 38–46

    Google Scholar 

  • Linder P & Slonimski PP (1989) An essential yeast protein, encoded by duplicated genesTIF1 andTIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. Proc. Natl. Acad. Sci. USA 86: 2286–2290

    Google Scholar 

  • Lisowsky T (1990) Molecular analysis of the mitochondrial transcription factorMTF2 ofSaccharomyces-cerevisiae. Mol. Gen. Genet. 220: 186–190

    Google Scholar 

  • Lisowsky T & Michaelis G (1988) A nuclear gene essential for mitochondrial replication suppresses a defect of mitochondrial transcription inSaccharomyces cerevisiae. Mol. Gen. Genet. 214: 218–223

    Google Scholar 

  • Lisowsky T and Michaelis G (1989) Mutations in the genes for mitochondrial RNA polymerase and a second mitochondrial transcription factor ofSaccharomyces cerevisiae. Mol. Gen. Genet. 219: 125–128

    Google Scholar 

  • Maarse AC, van Tuinen EJ, Meijer M & Grivell LA (1990) Identification of yeast mutants with defects in mitochondrial protein import. Yeast 6: S456

  • Maleszka R, Skelly PJ & Clark-Walker GD (1991) Rolling circle replication of DNA in yeast mitochondria. EMBO J. 10: 3923–3929

    Google Scholar 

  • Marczynski GT, Schultz PW & Jaehning JA (1989) Use of yeast nuclear DNA sequences to define the mitochondrial RNA polymerase promoter in vitro. Mol. Cell. Biol. 9: 3193–3202

    Google Scholar 

  • Martin NC & Underbrink-Lyon K (1981) A mitochondrial locus is necessary for the synthesis of mitochondrial tRNA in the yeastSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78: 4743–4747

    Google Scholar 

  • Masters BS, Stohl LL & Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51: 89–99

    Google Scholar 

  • McMullin TW, Haffter P & Fox TD (1990) A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol. Cell. Biol. 10: 4590–4595

    Google Scholar 

  • Michaelis U, Körte A. & Rödel G (1991) Association of cytochrome b translational activator proteins with the mitochondrial membrane: implications for cytochrome b expression in yeast. Mol. Gen. Genet. 230: 177–185

    Google Scholar 

  • Michel F & Lang BF (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316: 641–643

    Google Scholar 

  • Michel F, Umesono K & Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns — a review. Gene 82: 5–30

    Google Scholar 

  • Mueller PP, Reif MK, Zonghou S, Sengstag C, Mason TL & Fox TD (1984) A nuclear mutation that post-transcriptionally blocks accumulation of a yeast mitochondrial gene product can be suppressed by a mitochondrial gene rearrangement. J. Mol. Biol. 175: 431–452

    Google Scholar 

  • Myers AM, Pape LK & Tzagoloff A (1985) Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J. 4: 2087–2092

    Google Scholar 

  • Nakagawa K, Morishima N & Shibata T (1991) A maturase-like subunit of the sequence-specific endonuclease Endo.SceI from yeast mitochondria. J. Biol. Chem. 266: 1977–1984

    Google Scholar 

  • Nagley P & Devenish RJ (1989) Leading organellar proteins along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. Trends in Biochem. Sci 14: 31–35

    Google Scholar 

  • Natsoulis G, Hilger F & Fink GR (1986) TheHTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235–243

    Google Scholar 

  • Nobrega MP, Nobrega FG & Tzagoloff A (1990)COX10 codes for a protein homologous to the orf1 product ofParacoccus denitrificans and Is required for the synthesis of yeast cytochrome oxidase. J. Biol. Chem. 265: 14220–14226

    Google Scholar 

  • Olesen JT & Guarente L (1990) The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition — model for the HAP2/3/4 complex. Genes & Dev. 4: 1714–1729

    Google Scholar 

  • Olesen J, Hahn S & Guarente L (1987) Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2 in an interdependent manner. Cell 51: 953–961

    Google Scholar 

  • Ooi BG, Lukins HB, Linnane AW & Nagley P (1987) Biogenesis of mitochondria: a mutation in the 5′-untranslated region of yeast mitochondrialoli1 mRNA leading to impairment in translation of subunit 9 of the mitochondrial ATPase complex. Nucleic Acids Res. 15: 1965–1977

    Google Scholar 

  • Osinga KA, De Vries E, Van der Horst G & Tabak HF (1984) Processing of yeast mitochondrial messenger RNAs at a conserved dodecamer sequence. EMBO J. 3: 829–834

    Google Scholar 

  • Parikh VS, Morgan MM, Scott R, Clements LS & Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235: 576–580

    Google Scholar 

  • Partaledis JA & Mason TL (1988) Structure and regulation of a nuclear gene inSaccharomyces cerevisiae that specifies MRP13, a protein of the small subunit of the mitochondrial ribosome. Mol. Cell. Biol. 8: 3647–3660

    Google Scholar 

  • Payne MJ, Schweizer E & Lukins HB (1991) Properties of two nuclear mutants affecting expression of the mitochondrial oli1 gene ofSaccharomyces cerevisiae. Curr. Genet. 19: 343–351

    Google Scholar 

  • Pel HJ, Tzagoloff A & Grivell LA (1991) The identification of 18 nuclear genes required for the expression of the yeast mitochondrial gene encoding cytochrome c oxidase subunit 1. Curr. Genet. (in press)

  • Perea J, Delahodde A, Goguel V, Hatat D, Sargueil B & Jacq C (1990) Functions of intron-encoded proteins from yeast mitochondrial genome. RNA maturase and DNA endonuclease. In: Quagliariello E, Papa S, Palmieri F & Saccone C (Eds) Structure, Function and Biogenesis of Energy Transfer Systems (pp 205–208). Elsevier, Amsterdam

    Google Scholar 

  • Perlman PS & Birky CWjr (1974) Mitochondrial genetics in bakers' yeast: a molecular mechanism for recombinational polarity and suppressiveness. Proc. Natl. Acad. Sci. USA 71: 4612–4616

    Google Scholar 

  • Pfanner N & Neupert W (1990) The mitochondrial protein import apparatus. Ann. Rev. Biochem. 59: 331–353

    Google Scholar 

  • Pfeifer K, Arcangioli B & Guarente L (1987) Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activator site UAS1 of the CYC1 gene. Cell 49: 9–18

    Google Scholar 

  • Pfeifer K, Kim K-S, Kogan S & Guarente L (1989) Functional dissection and sequence of yeast HAP1 activator. Cell 56: 291–301

    Google Scholar 

  • Pinkham JL & Guarente L (1985) Cloning and molecular analysis of theHAP2 locus: a global regulator of respiratory genes inSaccharomyces cerevisiae. Mol. Cell. Biol. 5: 3410–3416

    Google Scholar 

  • Piskur J (1988a) Transmission of yeast mitochondrial loci to progeny is reduced when nearby intergenic regions containing ori sequences are deleted. Mol. Gen. Genet. 214: 425–432

    Google Scholar 

  • Piskur J (1988b) A 5 kb intergenic region containing ori1 in the mitochondrial DNA ofSaccharomyces cerevisiae is dispensable for expression of the respiratory phenotype. FEBS Lett. 229: 145–149

    Google Scholar 

  • Pollock RA, Hartl F-U, Cheng MY, Ostermann J, Horwich A & Neupert W (1988) The processing peptidase of yeast mitochondria: the two co-operating components MPP and PEP are structurally related. EMBO J. 7: 3493–3500

    Google Scholar 

  • Poutre C & Fox TD (1987)PET111, aSaccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115: 637–647

    Google Scholar 

  • Rödel G (1986) Two yeast nuclear genes,CBS1 andCBS2, are required for translation of mitochondrial transcripts bearing the 5′-untranslated COB leader. Curr. Genet. 11: 41–45

    Google Scholar 

  • Rothstein R & Sherman F (1980) Genes affecting the expression of cytochrome c in yeast: genetic mapping and genetic interactions. Genetics 94: 871–889

    Google Scholar 

  • Sakai H, Stiess R & Weiss-Brummer B (1991) Mitochondrial mutations restricting spontaneous translational frameshift suppression in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 227: 306–317

    Google Scholar 

  • Sargueil B, Delahodde A, Hatat D, Lazowska J & Jacq C (1991) A new specific DNA endonuclease activity in yeast mitochondria. Mol. Gen. Genet. 255: 340–341

    Google Scholar 

  • Schatz G (1991) Transport of proteins into mitochondria. The Harvey Lectures, Series 85 (pp 109–126). Wiley-Liss Inc

  • Schinkel AH & Tabak HF (1989) Mitochondrial RNA polymerase: dual role in transcription and replication. Trends in Genet. 5: 149–154

    Google Scholar 

  • Schinkel AH, Groot-Koerkamp MJA & Tabak HF (1988) Mitochondrial RNA polymerase ofSaccharomyces cerevisiae: subunit composition and mechanism of promoter recognition. EMBO J. 7: 3255–3262

    Google Scholar 

  • Schmelzer C & Schweyen RJ (1986) Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation. Cell 46: 557–565

    Google Scholar 

  • Schultz J & Carlson M (1987) Molecular analysis ofSSN6, a gene functionally related to theSNF1 protein kinase ofSaccharomyces cerevisiae. Mol. Cell. Biol. 7: 3637–3645

    Google Scholar 

  • Séraphin B, Boulet A, Simon M & Faye G (1987a) Construction of a yeast strain devoid of mitochondrial introns and its use to screen nuclear genes involved in mitochondrial splicing. Proc. Natl. Acad. Sci. USA 84: 6810–6814

    Google Scholar 

  • Séraphin B, Simon M & Faye G (1987b) The mitochondrial reading frame RF3 is a functional gene inSaccharomyces uvarum. J. Biol. Chem. 262: 10146–10153

    Google Scholar 

  • Séraphin S, Simon M & Faye G (1988)MSS18, a yeast nuclear gene involved in the splicing of intron a15b of the mitochondrialcox1 transcript. EMBO J. 7: 1455–1464

    Google Scholar 

  • Séraphin B, Simon M, Boulet A & Faye G (1989) Mitochondrial splicing requires a protein from a novel helicase family. Nature 337: 84–87

    Google Scholar 

  • Slonimski PP & Tzagoloff A (1976) Localization in mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductase. Eur. J. Biochem. 61: 27–41

    Google Scholar 

  • Slonimski PP, Claisse ML, Foucher M, Jacq C, Kochko A, Lamouroux A, Pajot P, Perrodin G, Spyridakis A & Wambier-Kluppel ML (1978) Mosaic organization and expression of the mitochondrial DNA region controlling cytochrome c reductase and oxidase. In: Bacila M, Horecker BL & Stopanni AOM (Eds) Biochemistry and Genetics of Yeasts (pp 391–401). Academic Press, New York

    Google Scholar 

  • Smith BJ & Yaffe MP (1991) A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle. Mol. Cell. Biol. 11: 2647–2655

    Google Scholar 

  • Sor F & Fukuhara H (1982) Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucleic Acids Res 21: 6571–6577

    Google Scholar 

  • Sor F & Fukuhara H (1984) Erythromycin and spiramycin resistance mutations of yeast mitochondria: nature of the rib2 locus in the large ribosomal RNA gene. Nucleic Acids Res. 12: 8313–8318

    Google Scholar 

  • Thevelein JM (1992) The RAS-adenylate cyclase pathway and cell cycle control inSaccharomyces cerevisiae. A. v. Leeuwenhoek 62: 109–130 (this issue)

    Google Scholar 

  • Ticho BS & Getz GS (1988) The characterization of yeast mitochondrial RNA polymerase. A monomer of 150,000 daltons with a transcription factor of 70,000 daltons. J. Biol. Chem. 263: 10096–10103

    Google Scholar 

  • Trumbly RJ (1988) Cloning and characterization of theCYC8 gene mediating glucose repression in yeast. Gene 73: 97–111

    Google Scholar 

  • Tzagoloff A & Dieckmann CL (1990)Pet genes ofSaccharomyces cerevisiae. Microbiol. Rev. 54: 211–225

    Google Scholar 

  • Tzagoloff A & Myers AM (1986) Genetics of mitochondrial biogenesis. Ann. Rev. Biochem. 55: 249–285

    Google Scholar 

  • Tzagoloff A, Akai A, Needleman RB & Zulch G (1975) Assembly of the mitochondrial membrane system. Cytoplasmic mutants ofSaccharomyces cerevisiae with lesions in enzymes of the respiratory chain and the mitochondrial ATPase. J. Biol. Chem. 250: 8236–8242

    Google Scholar 

  • Valencik ML & McEwen JE (1991) Genetic evidence that different functional domains of thePET54 gene product facilitate expression of the mitochondrial genesCOX1 andCOX3 inSaccharomyces cerevisiae. Mol. Cell. Biol. 11: 2399–2409

    Google Scholar 

  • Valencik ML, Kloeckener-Gruissem B, Poyton RO & McEwen JE (1989) Disruption of the yeast nuclearPET54 gene blocks excision of mitochondrial intron al5β from pre-mRNA for cytochrome c oxidase subunit I. EMBO J. 8: 3899–3904

    Google Scholar 

  • Valens M, Rinaldi T, Daignan-Fornier B & Bolotin-Fukuhara M (1992) Identification of nuclear genes which participate to mitochondrial translation inS. cerevisiae. Biochimie (in press)

  • Van Loon APGM, de Groot RJ, Van Eyk E, Van der Horst GTJ & Grivell LA (1982) Isolation and characterization of genes coding for subunits of the yeast ubiquinol-cytochrome c reductase complex. Gene 20: 323–327

    Google Scholar 

  • Waters R & Moustacchi E (1974) The fate of ultraviolet-induced pyrimidie dimers in the mitochondrial DNA ofSaccharomyces cerevisiae following various post-irradiation cell treatments. Biochim. Biophys. Acta 366: 241–250

    Google Scholar 

  • Weiss-Brummer B, Sakai H & Kaudewitz F (1987) A mitochondrial frameshift suppressor (+) of the yeast S. cerevisiae maps in the mitochondrial 15S rRNA locus. Curr. Genet. 11: 295–301

    Google Scholar 

  • Wiesenberger G, Link TA, Ahsen U von, Waldherr M & Schweyen RJ (1991)MRS3 andMRS4, two suppressors of mtRNA splicing defects in yeast, are new members of the mitochondrial carrier family. J. Mol. Biol. 217: 23–37

    Google Scholar 

  • Wiesenberger G, Waldherr M & Schweyen RJ (1992) The nuclear geneMRS2 is essential for the excision of group II introns from yeast mitochondrial transcripts in vivo. J. Biol. Chem. (in press)

  • Wilcoxen SE, Peterson CR, Winkley CS, Keller MJ & Jaehning JA (1988) Two forms ofRP041-dependent RNA polymerase. Regulation of the RNA polymerase by glucose-repression may control yeast mitochondrial gene expression. J. Biol. Chem. 263: 12346–12351

    Google Scholar 

  • Williams FE & Trumbly RJ (1990) Characterization ofTUP1, a mediator of glucose repression inSaccharomyces cerevisiae. Mol. Cell. Biol. 10: 6500–6511

    Google Scholar 

  • Williams FE, Varanasi U & Trumbly RJ (1991) TheCYC8 andTUP1 proteins involved in glucose repression inSaccharomyces cerevisiae are associated in a protein complex. Mol. Cell. Biol. 11: 3307–3316

    Google Scholar 

  • Williams RS, Johnston SA, Riedy M, De Vit MJ, McElligot SG & Sanford JC (1991) Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc. Natl. Acad. Sci. USA 88: 2726–2730

    Google Scholar 

  • Wright RM & Poyton RO (1990) Release of twoSaccharomyces cerevisiae cytochrome genes,COX6 andCYC1, from glucose repression requires theSNF1 andSSN6 gene products. Mol. Cell. Biol. 10: 1297–1300

    Google Scholar 

  • Wu M & Tzagoloff A (1989) Identification and characterization of a new gene (CBP3) required for the expression of yeast coenzyme QH2-cytochrome c reductase. J. Biol. Chem. 264: 11122–11130

    Google Scholar 

  • Yaffe MP & Schatz G (1984) Two nuclear mutations that block mitochondrial protein import in yeast. Proc. Natl. Acad. Sci. USA 81: 4819–4823

    Google Scholar 

  • de Zamaroczy M, Baldacci G & Bernardi G (1979) Putative origins in the mitochondrial genome of yeast. FEBS Lett. 108: 429–432

    Google Scholar 

  • de Zamaroczy M, Faugeron-Fonty G, Baldacci G, Coursot R & Bernardi G (1984) The ori sequences of the mitochondrial genome of a wild-type yeast strain: number, location, orientation and structure. Gene 32: 439–457

    Google Scholar 

  • Zhu H, Macreadie IG & Butow RA (1987) RNA processing and expression of an intron-encoded protein in yeast mitochondria: role of a conserved dodecamer sequence. Mol. Cell. Biol. 7: 2530–2537

    Google Scholar 

  • Zitomer RS & Lowry CV (1992) Regulation of gene expression by oxygen inSaccharomyces cerevisiae. Microbiol. Rev. (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolotin-Fukuhara, M., Grivell, L.A. Genetic approaches to the study of mitochondrial biogenesis in yeast. Antonie van Leeuwenhoek 62, 131–153 (1992). https://doi.org/10.1007/BF00584467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584467

Key words

Navigation