Skip to main content
Log in

Water, K+, H+, lactate and glucose fluxes during cell volume regulation in perfused rat liver

  • Transport Processes, Metabolism and Bendocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The present study has been performed to test for ion release from isolated perfused rat liver exposed to hypotonic perfusates. Replacement of 40 mmol/l NaCl in perfusate by 80 mmol/l raffinose leads to slight alkalinization and slight decrease of liver weight. Subsequent decrease of perfusate osmolarity by omission of raffinose results in an increase of liver weight and a parallel increase of effluent sodium, chloride and potassium activity pointing to net uptake of solute free water. While effluent chloride and sodium activities approach perfusate activities within less than 2 min, a second, 6 min lasting increase of effluent potassium activity is observed, pointing to potassium release by the liver. This transient increase of effluent potassium activity is paralleled by a decrease of liver weight. Throughout exposure to hypotonic perfusates, lactate, pyruvate and glucose release by the liver is significantly decreased and effluent pH is rendered alkaline. Readdition of 80 mmol/l raffinose leads to rapid decrease of liver weight and a parallel decrease of effluent sodium, chloride and potassium activities followed by a 10–20 min lasting decrease of effluent potassium activity, pointing to net uptake of potassium, which almost matches the net release observed before. The transient decrease of potassium activity is paralleled by an increase of liver weight, an increase of effluent glucose, lactate and pyruvate concentration and an acidification of the effluent. Similar decrease of effluent potassium activity, acidification of effluent and increase of effluent glucose, lactate and pyruvate concentration are observed, if perfusates are made hypertonic by addition of raffinose. In conclusion, both, volume regulatory decrease (VRD) and increase (VRI) can be elicited in liver and are in large part achieved by movements of potassium. Lactate and pyruvate production is decreased throughout exposure to hypotonic perfusates and enhanced following exposure to hypertonic perfusates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakker-Grunwald T (1983) Potassium permeability and volume control in isolated rat hepatocytes. Biochim Biophys Acta 731:239–242

    Article  CAS  PubMed  Google Scholar 

  2. Cala PM (1980) Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol 76:683–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cala PM (1983a) Volume regulation by red blood cells. Mechanisms of ion transport between cells and mechanisms. Mol Physiol 4:33–52

    CAS  Google Scholar 

  4. Cala PM (1983b) Cell volume regulation by Amphiuma red blood cells. The role of Ca+2 as a modulator of alkali metal/H+ exchange. J Gen Physiol 82:761–784

    Article  CAS  PubMed  Google Scholar 

  5. Cala PM, Mandel LJ, Murphy E (1986) Volume regulation by Amphiuma red blood cells: cytosolic free Ca and alkali metal-H exchange. Am J Physiol 250:C423-C429

    CAS  PubMed  Google Scholar 

  6. Dellasega M, Grantham JJ (1973) Regulation of renal tubule cell volume in hypotonic media. Am J Physiol 224:1288–1294

    CAS  PubMed  Google Scholar 

  7. Eveloff JL, Warnock DG (1987) Activation of ion transport systems during cell volume regulation. Am J Physiol 252:F1-F10

    CAS  PubMed  Google Scholar 

  8. Fisher RS, Persson B-E, Spring KR (1981) Epithelial cell volume regulation: Bicarbonate dependence. Science 214:1357–1359

    Article  CAS  PubMed  Google Scholar 

  9. Foskett JK, Spring KR (1985) Involvement of calcium and cytoskeleton in gallbladder epithelial cell volume regulation. Am J Physiol 248:C27-C36

    CAS  PubMed  Google Scholar 

  10. Geck P, Pietrzyk C, Burckhardt B-C, Pfeiffer B, Heinz E (1980) Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells. Biochim Biophys Acta 600:432–447

    Article  CAS  PubMed  Google Scholar 

  11. Grantham JJ, Lowe CM, Dellasega M, Cole BR (1977) Effect of hypotonic medium on K and Na content of proximal renal tubules. Am J Physiol 232:F42-F49

    CAS  PubMed  Google Scholar 

  12. Grinstein S, Cohen S (1987) Cytoplasmic [Ca2+] and intracellular pH in lymphocytes. Role of membrane potential and volume-activated Na+/H+ exchange. J Gen Physiol 89:185–213

    Article  CAS  PubMed  Google Scholar 

  13. Grinstein S, Dupre A, Rothstein A (1982) Volume regulation by human lymphocytes. J Gen Physiol 79:849–868

    Article  CAS  PubMed  Google Scholar 

  14. Grinstein S, Clarke CA, Rothstein A (1983) Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification. J Gen Physiol 82: 619–638

    Article  CAS  PubMed  Google Scholar 

  15. Grinstein S, Rothstein A, Sarkadi B, Gelfand EW (1984) Responses of lymphocytes to anisotonic media: Volume-regulating behavior. Am J Physiol 246:C204-C215

    CAS  PubMed  Google Scholar 

  16. Grinstein S, Cohen S, Goetz JD, Rothstein A (1985a) Na+/H+ exchange in volume regulation and cytoplasmic pH homeostasis in lymphocytes. Fed Proc 44:2508–2512

    CAS  PubMed  Google Scholar 

  17. Grinstein S, Goetz JD, Cohen S, Furuya W, Rothstein A, Gelfand EW (1985b) Mechanism of regulatory volume increase in osmotically shrunken lymphocytes. Mol Physiol 8:185–198

    CAS  Google Scholar 

  18. Häussinger D (1987) Isolated perfused rat liver: An experimental model for studies on ammonium and amino acid metabolism. Infusionstherapie 14:174–178

    Google Scholar 

  19. Hoffmann EK (1985) Role of separate K+ and Cl channels and of Na+/Cl cotransport in volume regulation in Ehrlich cells. Fed Proc 44:2513–2519

    CAS  PubMed  Google Scholar 

  20. Hoffmann EK (1986) Anion transport systems in the plasma membrane of vertebrate cells. Biochim Biophys Acta 864:1–31

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann EK (1987) Volume regulation in cultured cells. Curr Top Membr Transp 30:125–179

    Article  Google Scholar 

  22. Hoffmann EK, Simonsen LO, Lambert IH (1984) Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J Membr Biol 78:211–222

    Article  CAS  PubMed  Google Scholar 

  23. Hoffmann EK, Sjoholm C, Simonsen LO (1983) Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase). J Membr Biol 76:269–280

    Article  CAS  PubMed  Google Scholar 

  24. Jennings ML, Douglas SM, McAndrew PE (1986) Amiloridesensitive sodium-hydrogen exchange in osmotically shrunken rabbit red blood cells. Am J Physiol 251:C32-C40

    CAS  PubMed  Google Scholar 

  25. Kirk KL, DiBona DR, Schafer JA (1987) Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K+. Am J Physiol 252:F933-F942

    CAS  PubMed  Google Scholar 

  26. Kregenow FM (1981) Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media. Annu Rev Physiol 43:493–505

    Article  CAS  PubMed  Google Scholar 

  27. Kregenow FM, Caryk T, Siebens AW (1985) Further studies of the volume-regulatory response of Amphiuma red cells in hypertonic media. Evidence for amiloride-sensitive Na/H exchange. J Gen Physiol 86:565–584

    Article  CAS  PubMed  Google Scholar 

  28. Kristensen LO (1986) Associations between transports of alanine and cations across cell membrane in rat hepatocytes. Am J Physiol 251:G575-G584

    CAS  PubMed  Google Scholar 

  29. Kristensen LO, Folke M (1984) Volume-regulatory K+ efflux during concentrative uptake of alanine in isolated rat hepatocytes. Biochem J 221:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lang F, Oberleithner H, Kolb H-A, Paulmichl M, Völkl H, Wang W (1988) Interaction of intracellular pH and cell membrane potential. In: Häussinger D (ed) pH Homeostasis: mechanisms and control. Academic Press, pp 27–42

  31. Larson M, Spring KR (1984) Volume regulation by Necturus gallbladder: basolateral KCl exit. J Membr Biol 81:219–232

    Article  CAS  PubMed  Google Scholar 

  32. Lau KR, Hudson RL, Schultz SG (1984) Cell swelling increases a barium-inhibitable potassium conductance in the basolateral membrane of Necturus small intestine. Proc Natl Acad Sci USA 81:3591–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Linshaw MA, Grantham JJ (1980) Effect of collagenase and ouabain on renal cell volume in hypotonic media. Am J Physiol 238:F491-F498

    CAS  PubMed  Google Scholar 

  34. O'Neill WC, Mikkelsen RB (1987) Furosemide-sensitive Na+ and K+ transport and human erythrocyte volume. Biochim Biophys Acta 896:196–202

    Article  PubMed  Google Scholar 

  35. Parker JC (1978) Sodium and calcium movements in dog red blood cells. J Gen Physiol 71:1–17

    Article  CAS  PubMed  Google Scholar 

  36. Reith A, Barnard T, Rohr H-P (1976) Stereology of cellular reaction patterns. CRC Crit Rev Toxicol 4:219–269

    Article  CAS  PubMed  Google Scholar 

  37. Relman AS (1972) Metbolic consequences of acidbase disorders. Kidney Int 1:347–359

    Article  CAS  PubMed  Google Scholar 

  38. Siebens AW, Kregenow FM (1985) Volume-regulatory responses of Amphiuma red cells in anisotonic media. The effect of amiloride. J Gen Physiol 86:527–564

    Article  CAS  PubMed  Google Scholar 

  39. Simmons NL (1984) Epithelial cell volume regulation in hypotonic fluids: studies using a model tissue culture renal epithelial cell system. Q J Exp Physiol 69:83–95

    Article  CAS  PubMed  Google Scholar 

  40. Spring KR (1985) Salt and water transport by epithelia: Electrophysiologic and light microscopic techniques. Mol Physiol 8:35–42

    Google Scholar 

  41. Ussing HH (1982) Volume regulation of frog skin epithelium. Acta Physiol Scand 114:363–369

    Article  CAS  PubMed  Google Scholar 

  42. Ussing HH (1986) Epithelial cell volume regulation illustrated by experiments in frog skin. Renal Physiol 9:38–46

    CAS  PubMed  Google Scholar 

  43. Van Rossum GDV, Russo MA (1981) Ouabain-resistant mechanism of volume control and the ultrastructural organization of liver slices recovering from swelling in vitro. J Membr Biol 59:191–209

    Article  PubMed  Google Scholar 

  44. Völkl H, Lang F (1988) Ionic requirement for regulatory cell volume decrease in renal straight proximal tubules. Pflügers Arch 412:1–6

    Article  PubMed  Google Scholar 

  45. Weibel ER (1979) Stereological methods, vol I. Practical methods for biological morphometry. Academic Press, New York London

    Google Scholar 

  46. Welling PA, Linshaw MA, Gullivan LP (1985) Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am J Physiol 249:F20-F27

    CAS  PubMed  Google Scholar 

  47. Whittembury G, Grantham JJ (1976) Cellular aspects of renal sodium transport and cell volume regulation. Kidney Int 9:103–120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, F., Stehle, T. & Häussinger, D. Water, K+, H+, lactate and glucose fluxes during cell volume regulation in perfused rat liver. Pflugers Arch. 413, 209–216 (1989). https://doi.org/10.1007/BF00583532

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583532

Key words

Navigation