Skip to main content
Log in

Electrophysiological study of single Leydig cells freshly isolated from rat testis

I. Technical approach and recordings of the membrane potential in standard solution

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Single Leydig cells were isolated from rat testis by a collagenase digestion procedure and purified through a 21,000g self generated densities gradient of 35% Percoll. A method including collagen and fibronectin was proposed to attach freshly prepared Leydig cells to the bottom of plastic Petri dishes.

Four hours after the isolation of the cells, it was simultaneously possible to determine their membrane potential by a standard electrophysiological technique using intracellular microelectrodes and to judge cellular integrity by direct microscopic observations.

In standard Earle's solution, changes of membrane potentials appeared to be biphasic. On 198 impaled cells, 18±1 s after the impalement was effective, the membrane potential reached a most negative value (MP1) (−37.6±0.7 mV), followed by a gradual depolarization to a steady state (MP2) (−25.1±0.6 mV) which remained constant for a few minutes.

In standard Earle's solution, the membrane resistance was low or decreasing towards the most negative potential, then it increased towards the steady potential. At this state, the average value of the cell input resistance was 65.9±6.0 MΩ (n=16).

No action potential was observed either in standard Earle's solution or under a depolarizing current state.

It was concluded that the electrophysiological characteristics of the Leydig cell are similar to those of fibroblasts and macrophages, three types of cells with the same mesenchymal origin, present in the interstitial tissue of the rat testis. But the resting potential of the Leydig cell is higher and this secreting cell does not elicit hyperpolarizing oscillations at the steady state, under mechanical or electrical stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bourke JR, Carseldine KL, Ferris SH, Huwman GJ, Manley SW (1981) Changes in membrane potential of cultured porcine and human thyroid cells in response to thyrotrophin and other agents. J Endocrinol 88:187–196

    PubMed  CAS  Google Scholar 

  • Browning JY, Heindel JJ, Grotjan HE (1983) Primary culture of purified Leydig cells isolated from adult rat testis. Endocrinology 112:543–549

    PubMed  CAS  Google Scholar 

  • Christensen AK (1975) Leydig cells. In: Berne RM (ed) Handbook of physiology, vol 5, sec 7, American Physiological Society, Bethesda, MD, pp 57–94

    Google Scholar 

  • Clegg EJ, McMillan EW (1965) The phagocytic nature of Schiffpositive interstitial cells in the rat testis. J Endocrinol 31:199–200

    Article  Google Scholar 

  • Conn PM, Tsuruhara T, Dufau M, Catt KJ (1977) Isolation of highly purified Leydig cells by density gradient centrifugation. Endocrinology 101:639–642

    PubMed  CAS  Google Scholar 

  • Cooke BA, Magee-Brown R, Golding M, Dix CJ (1981) The heterogeneity of Leydig cells from mouse and rat testes — evidence for a Leydig cell cycle? Int J Androl 4:355–366

    PubMed  CAS  Google Scholar 

  • Dufau ML, Catt KJ (1975) Gonadotropic stimulation of interstitial cell functions of the rat testis in vitro. Methods Enzymol 39:252–271

    PubMed  CAS  Google Scholar 

  • Forest MG, Cathiard AM, Bertrand J (1973) Total and unbound testosterone levels in the newborn and in normal hypogonadal children: use of a sensitive radioimmunoassy for testosterone. J Clin Endocrinol Metab 36:1132–1142

    PubMed  CAS  Google Scholar 

  • Gale JS, Wakefield JSJ, Ford HC (1982) Isolation of rat Leydig cells by density gradient centrifugation. J Endocrinol 92:293–302

    PubMed  CAS  Google Scholar 

  • Gallin EK, Wiederhold ML, Lipsky PE, Rosenthal AS (1975) Spontaneous and induced membrane hyperpolarizations in macrophages. J Cell Physiol 86:653–662

    Article  PubMed  Google Scholar 

  • Higuchi T, Kaneko A, Abel JH Jr, Niswender GD (1976) Relationship between membrane potential and progesterone release in ovine corpora lutea. Endocrinology 99:1023–1032

    PubMed  CAS  Google Scholar 

  • Hooker CW (1970) The intertubular tissue of the testis. In: Johnson AD, Gomes WR, Van Demark NL (eds) The testis. vol 1. Academic Press, New York, pp 483–550

    Google Scholar 

  • Hunter MG, Magee-Brown R, Dix CJ, Cooke BA (1982) The functional activity of adult mouse Leydig cell in monolayer culture. Effect of lutotropin and foetal calf serum. Mol Cell Endocrinol 25:35–47

    Article  PubMed  CAS  Google Scholar 

  • Janszen FHA, Cooke BA, Van Driel MJA, Van der Molen HJ (1976) Purification and characterization of Leydig cells from rat testes. J Endocrinol 70:345–359

    PubMed  CAS  Google Scholar 

  • Joffre M, Mollard P, Régondaud P, Gargouïl YM (1981a) Potentiel membranaire de la cellule de Leydig isolée du testicule de rat. J Physiol (Paris) 77:20A

    Google Scholar 

  • Joffre M, Mollard P, Régondaud P, Gargouïl YM (1981b) Hyperpolarisation induite par la pénétration de la microélectrode dans la cellule de Leydig isolée du testicule de rat. J Physiol (Paris) 77:38A

    Google Scholar 

  • Joffre M, Mollard P, Régondaud P, Gargouïl YM (1984) Electrophysiological study of single Leydig cells freshly isolated from rats testis: II. Effects of ionic replacements, inhibitors, human chorionic gonadotropin on a calcium activated potassium permeability. Pflügers Arch 401:246–253

    PubMed  CAS  Google Scholar 

  • Kleinman HK, McGoodwin EB, Rennard SI, Martin GR (1979) Preparation of collagen substrates for cell attachment: effect of collagen concentration and phosphate buffer. Anal Chem 94:308–312

    CAS  Google Scholar 

  • Lassen UV, Sten-Knudsen O (1968) Direct measurement of membrane potential and membrane resistance of human red cell. J Physiol (Lond) 195:681–696

    CAS  Google Scholar 

  • Lassen UV, Nielsen AMT, Pape L, Simonsen LO (1971) The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation. J Membr Biol 6:269–288

    Article  Google Scholar 

  • Lassen UV, Pape L, Vestergaard-Bogind B, Bengtson O (1974) Calcium-related hyperpolarization of the Amphiuma red cell membrane following micropuncture. J Membr Biol 18: 125–144

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Weeks TA, Kao RL, Akaike N, Brown AM (1979) Sodium current in single heart muscle cells. Nature 278:269–271

    Article  PubMed  CAS  Google Scholar 

  • Lefevre A, Saez JM, Finaz C (1983) hCG responsiveness of purified Leydig cells from immature and mature rats. Hormone Res 17:114–120

    PubMed  CAS  Google Scholar 

  • Levy H, Deane HW, Rubin BL (1959) Visualization of steroid-3β-hydroxydeshydrogenase activity in tissues of intact and hypophysectomized rats. Endocrinology 65:933–943

    Google Scholar 

  • Lymangrover JR (1980) Adrenocorticotrophic hormone and cyclic adenosine monophosphate effect on mouse adrenal cortical cell membrane potential. Experientia 36:613–614

    Article  PubMed  CAS  Google Scholar 

  • Nelson PG, Henkart MD (1979) Oscillatory membrane potential changes in cells of mesenchymal origin: the role of an intracellular calcium regulating system. J Exp Biol 81:49–61

    PubMed  CAS  Google Scholar 

  • Okada Y, Doida Y, Roy G, Tsuchiya W, Inouye K, Inouye A (1977) Oscillations of membrane potential in L cells. I. Basic characteristics. J Membr Biol 35:319–335

    Article  PubMed  CAS  Google Scholar 

  • Payne AH, Downing JR, Wrong KL (1980) Luteinizing hormone receptors and testosterone synthesis in two distinct populations of Leydig cells. Endocrinology 106:1424–1429

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH (1974) The effect of glucagon on the liver cell membrane potential. J Physiol (Lond) 239:647–656

    CAS  Google Scholar 

  • Petersen OH (1980) The electrophysiology of gland cells. Monographs of the Physiological Society, no 36. Academic Press, London

    Google Scholar 

  • Powell T, Terrar DA, Twist VW (1980) Electrical properties of individual cells isolated from adult rat ventricular myocardium. J Physiol (Lond) 302:131–153

    CAS  Google Scholar 

  • Purvis K, Hansson V (1978) Hormonal regulation of Leydig cell function. Mol Cell Endocrinol 12:123–138

    Article  PubMed  CAS  Google Scholar 

  • Purvis K, Clausen OPF, Hansson V (1978) Functional characteristics of rat Leydig cells. Ann Biol Anim Biochem Biophys 18:595–605

    CAS  Google Scholar 

  • Schreiber JR, Weinstein DB, Hsueh AJW (1982) Lipoproteins stimulate androgen production by cultured rat testis cells. J Steroid Biochem 16:39–43

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Schafer G, Holstein AE, Hilz H (1978) Rapid isolation of mouse Leydig cells by centrifugation in Percoll density gradients with complete retention of morphological and biochemical integrity. FEBS Lett 91:333–338

    Article  PubMed  CAS  Google Scholar 

  • Singer JJ, Walsh JV (1980) Passive properties of the membrane of single freshly isolated smooth muscle cells. Am J Physiol 239:C153-C161

    PubMed  CAS  Google Scholar 

  • Stauber WT, Janaury CT, Schottelius BA (1977) Potentials in mammalian skeletal muscle from collagenase-treated tissue. Experientia 33:1614–1615

    Article  PubMed  CAS  Google Scholar 

  • Steinberger A (1975) In vitro techniques for the study of spermatogenesis. Methods Enzymol 39:283–296

    Article  PubMed  CAS  Google Scholar 

  • Tasaki K, Tsukamara Y, Ito S, Wayner MJ, Yu WY (1968) A simple, direct, and rapid method of filling microelectrodes. Physiol Behav 3:1009–1010

    Article  Google Scholar 

  • Walsh JV, Singer JJ (1980) Penetration-induced hyperpolarization as evidence for Ca2+ activation of K+ conductance in isolated smooth muscle cells. Am J Physiol 239:C182-C189

    PubMed  CAS  Google Scholar 

  • Wondergem R, Harder DR (1980) Transmembrane potential and aminoacid transport in rat hepatocytes in primary monolayer culture. J Cell Physiol 104:53–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joffre, M., Mollard, P., Régondaud, P. et al. Electrophysiological study of single Leydig cells freshly isolated from rat testis. Pflugers Arch. 401, 239–245 (1984). https://doi.org/10.1007/BF00582590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582590

Key words

Navigation