Skip to main content
Log in

Knudsen effect on plasma-particle mass transfer. I. Formulation and application to self-diffusion

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The Knudsen effect on mass transfer between a plasma gas and a small particle is investigated. A predictive model is developed by incorporating the Z-potential approach into the jump theory. The predictions of the model are explored through a case study. The results indicate that the Knudsen effect is significant and depends strongly on the particle size and the surface conditions. The plasma and the particle surface temperatures are also found to be determining factors. Under certain conditions, it is observed that the Knudsen effect can enhance the plasma-particle mass transfer, contrary to the predictions of the previous near-isothermal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

concentration (kmol m−3)

C p :

specific heat capacity (J kg−1 k−1)

d :

particle diameter (m)

D :

molecular diffusivity (m2 s−1)

H :

specific enthalpy (J kg−1)

I :

heat conduction potential (J s−1 m−1)

Kn:

Knudsen number

Kn*:

effective Knudsen number

l :

mean free path of gas molecules (m)

M :

molecular weight of the gas

N :

mass flux (kmol m−2s−1)

P :

capacitance variable defined by Eq. (2)

Pr:

Prandtl number

Q :

heat flux (J m−2 s−1)

r :

radial position (m)

R :

gas constant (J kmol−1 K−1)

Sc:

Schmidt number

Sc*:

modified Schmidt number

T :

temperature (K)

v :

mean molecular speed (m s−1)

V :

transport variable defined by Eq. (2)

Y :

mole fraction

Z :

Z-potential (J kmol−1)

γ :

specific heat ratio,C p /C v

λ :

thermal conductivity (J m−1 K−1 s−1)

μ :

gas viscosity (kg m−1 s−1)

ρ :

gas density (kg m−3)

η :

transport coefficient defined by Eq. (2)

θ :

surface accomodation coefficient

θ h :

thermal accomodation coefficient

θ m :

mass accomodation coefficient

O:

in the gas phase in the immediate particle vicinity

c :

using the continuum approach

r :

reference state

s :

at the particle surface

∞:

in the bulk of the plasma gas

References

  1. M. N. Kogan,Rarefield Gas Dynamics, Plenum Press, New York (1969).

    Google Scholar 

  2. S. A. Schaaf and P. L. Chambre,Fundamentals of Gas Dynamics, Vol. 3, H. W. Emmons, ed., Princeton University Press, Princeton, New Jersey (1985).

    Google Scholar 

  3. G. S. SpringerAdvances in Heat Transfer, Vol. 7, J. P. Hartnett and T. Irvine, eds., Academic Press, New York (1971).

    Google Scholar 

  4. N. N. Rykalin, A. A. Uglov, Yu N. Lokhov, and A. G. Gnedovets,High Temp. 19, 404 (1981).

    Google Scholar 

  5. F. M. Devienne,Advances in Heat Transfer, Vol. 2, J. P. Hartnett and T. Irvine, eds., Academic Press, New York (1965).

    Google Scholar 

  6. Xi Chen and E. Pfender,Plasma Chem. Plasma Process. 3, 97 (1983).

    Google Scholar 

  7. Xi Chen and E. Pfender,Plasma Chem. Plasma Process. 3, 351 (1983).

    Google Scholar 

  8. E. H. Kennard,Kinetic Theory of Gases, McGraw-Hill, New York (1938).

    Google Scholar 

  9. S. V. Joshi, J. Y. Park, P. R. Taylor, and L. S. Richardson,Plasma Chem. Plasma Process. 5, 143 (1985).

    Google Scholar 

  10. S. V. Joshi, Ph.D. Thesis in progress, University of Idaho (1987).

  11. M. I. Boulos, Internal Report, Université de Sherbrooke, May 1984.

  12. I. Amdur and E. A. Mason,Phys. Fluids 1, 370 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, S.V., Park, J.Y., Taylor, P.R. et al. Knudsen effect on plasma-particle mass transfer. I. Formulation and application to self-diffusion. Plasma Chem Plasma Process 6, 281–298 (1986). https://doi.org/10.1007/BF00575133

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00575133

Key words

Navigation