Skip to main content
Log in

Cyclosporin reduces renal prostanoid excretion in type 1 diabetic patients

  • Originals
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Prostacyclin and thromboxane A2 are important regulators of kidney blood flow. To examine whether changes in their metabolism could be involved in the nephrotoxicity of cyclosporin, we determined urinary excretion of 6-keto PGF1a and dinor-6-keto PGF1a (prostacyclin metabolites) and dinor-TxB2 (thromboxane metabolite) in five newly diagnosed type 1 diabetic patients during and after stopping cyclosporin therapy. In the resting state, cyclosporin had no effect on prostanoid excretion. In response to exercise, urinary excretion of 6-keto PGF1a was reduced by 50% (P<0.02), dinor-6-keto PGF1a by 15% (P<0.05) and dinor-TxB2 by 45% (P<0.02), while albumin excretion increased 4.5-fold (P<0.05) during cyclosporin therapy. Simultaneously, there was a rise in serum creatinine concentration, and renal biopsy specimens obtained from three patients showed periglomerular and interstitial fibrosis and tubular atrophy. After the discontinuation of cyclosporin therapy, serum creatinine concentrations returned to normal, histological changes improved and there was an associated rise in urinary prostanoid excretion. These data suggest that a reduction in renal prostanoid synthesis by cyclosporin may diminish renal blood flow and function, and lead to histological changes in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laupacis A, Stiller RC, Gardell C, Dupre J, Keown P, Wallace AC, Cyclosporin prevents diabetes in BB Wistar rats. Lancet 1:10–12, 1983

    Google Scholar 

  2. Stiller CR, Dupre J, Gent M, Jenner MR, Keown PA, Laupacis A, Martell R, Rodger NW, Graffenried BV, Wolfe BMJ, Effects of cyclosporin immunosuppression in insulin dependent diabetes of recent onset. Science 223:1363–1367, 1984

    Google Scholar 

  3. Feutren G, Papoz L, Assan R, Vialettes B, Karsenty G, Vexiau P, DuRostu H, Rodier M, Sirmai J, Lallemand A, Bach J-F, Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Lancet II:119–124, 1986

    Google Scholar 

  4. The Canadian/European Randomized Control Trial Group, Cyclosporine-induced remission of IDDM after early intervention. Diabetes 37:1574–1582, 1988

    Google Scholar 

  5. Klintmalm G, Bohman SO, Sundelin B, Wilczek H, Interstitial fibrosis in renal allografts after 12 to 46 months of cyclosporin treatment: beneficial effect of low-doses in early post-transplantation period. Lancet II:950–953, 1984

    Google Scholar 

  6. Palestine AG, Austin HA, Balow JE, Antonovych TT, Sabnis SG, Preuss HG, Nussenblatt RB, Renal histopathologic alterations in patients treated with cyclosporine for uveitis. N Engl J Med 314:1293–1298, 1986

    Google Scholar 

  7. Dieperink H, Leyssac PP, Starklint H, Kemp E, Nephrotoxicity of cyclosporin A. A lithium clearance and micropuncture study in rats. Eur J Clin Invest 16:69–77, 1986

    Google Scholar 

  8. Curtis JJ, Luke RG, Dubovsky E, Dielthelm AG, Whelchel JD, Jones P, Cyclosporin in therapeutic doses increase renal allograft vascular resistance. Lancet II:477–479, 1986

    Google Scholar 

  9. Lee JB, Attallah AA, Renal prostaglandins. Nephron 15:350–368, 1987

    Google Scholar 

  10. Brown Z, Neild GH, Cyclosporin inhibits prostacyclin production by cultured human endothelial cells. Transplant Proc 19:1178–1180, 1987

    Google Scholar 

  11. Viinikka L, Vuori J, Ylikorkala O, Lipid peroxides, prostacyclin and thromboxane A2 in runners during acute exercise. Med Sci Sports Exerc 3:275–277, 1984

    Google Scholar 

  12. Nadler JL, Yamamoto JV, Diurnal variation and exercise-induced changes of prostacyclin in man. Prostaglandins Leukot Med 2:71–78, 1986

    Google Scholar 

  13. Koivisto VA, Jantunen M, Sane T, Helve E, Pekonen R, Viinikka L, Ylikorkala O, Stimulation of prostacyclin synthesis by physical exercise in type 1 diabetes. Diabetes Care 12:609–614, 1989

    Google Scholar 

  14. Ylikorkala O, Pekonen F, Viinikka L, Renal prostacyclin and thromboxane in normotensive and preeclamptic women and their infants. J Clin Endocrinol Metab 63:1307–1312, 1986

    Google Scholar 

  15. Teppo A-M, Immunoturbidometry of albumin and IgG in urine. Clin Chem 28:1359–1361, 1982

    Google Scholar 

  16. Welch SG, Boucher BJ, A rapid micro-scale method for the measurement of hemoglobin A1. Diabetologia 14:209–211, 1978

    Google Scholar 

  17. Donatch P, Abisc E, Homberg M, et al, A radioimmunoassay to measure cyclosporin A in plasma and serum samples. J Immunoassay 2:19–32, 1981

    Google Scholar 

  18. Huggett A St G, Nixon DA, Use of glucose oxidase, peroxidase, and o-dianisine in determination of blood and urinary glucose. Lancet II:368–370, 1957

    Google Scholar 

  19. Hohorst HJ, L-(+)-laktat Bestimmung mit Laktatdehydrogenase and DPN. In: Bergmeyer HV (ed) Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim, West Germany, pp 266–270, 1962

    Google Scholar 

  20. Desbuquois B, Aurbach GD, Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab 33: 732–736, 1971

    Google Scholar 

  21. Brash AR, Jackson EK, Saggese CA, Lawson JA, Oates JA, FitzGerald GA, Metabolic disposition of prostacyclin in humans. J Pharmacol Exp Ther 266: 78–87, 1983

    Google Scholar 

  22. Frolich JA, Wilson TW, Sweetman BJ, Urinary prostaglandins: identification and orgin. J Clin Invest 55: 763–770, 1975

    Google Scholar 

  23. Bunke M, Itskovitz H, Urinary excretion and renal production of prostaglandins E2, F2a and thromboxane B2 in experimental diabetes mellitus. J Lab Clin Med 108: 332–339, 1986

    Google Scholar 

  24. Patrono C, Dunn MJ, The clinical significance of inhibition of renal prostaglandin synthesis. Kidney Int 32: 1–12, 1987

    Google Scholar 

  25. Lifschitz MD, Epstein M, Larios O, Relationship between urine flow rate and prostaglandin E excretion in human beings. J Lab Clin Med 105: 234–238, 1985

    Google Scholar 

  26. Mourits-Andersen T, Jensen IW, Nohr Jensen P, Ditzel J, Dyerberg J, Plasma 6-keto-PGF1a, thromboxane B2 and PGE2 in type 1 (insulin dependent) diabetic patients during exercise. Diabetologia 30: 460–463, 1987

    Google Scholar 

  27. Lifschitz MD, Renal effects of nonsteroidal anti-inflammatory agents. J Lab Clin Med 102: 313–323, 1983

    Google Scholar 

  28. Vane JR, Prostaglandins and the cardiovascular system. Br Heart J 49: 405–409, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koivisto, V.A., Leirisalo-Repo, M., Pelkonen, R. et al. Cyclosporin reduces renal prostanoid excretion in type 1 diabetic patients. Acta Diabetol 29, 1–5 (1992). https://doi.org/10.1007/BF00572820

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572820

Key words

Navigation