Skip to main content
Log in

Review of oxide formation in a plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The physical processes occurring at the surface and in the bulk of an oxide during plasma oxidation or anodization are discussed. It is shown that (i) the majority of oxygen ions used in the growth are formed by electron-assisted surface processes, (ii) the nature of the oxide surface and especially the presence of electrode contamination can have a determinant role in the oxygen exchange between the plasma and the oxide, and (iii) ion space charge can control the anodization kinetics. Two applications (formation of the insulating barrier of Josephson junctions, and GaAs MOSFET devices) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. O'Hanlon Gas discharge anodization, inOxides and Oxide Films, Vol. 5, A. K. Vijh, ed. (Marcel Dekker, New York, (1977), p. 105.

    Google Scholar 

  2. C. J. Dell'Oca, D. L. Pulfrey, and L. Young, inPhysics of Thin Films, Vol. 6, M. H. Francombe and R. W. Hoffmann, eds. (Academic Press, New York, 1971), p. 179.

    Google Scholar 

  3. J. L. Miles and P. H. SmithJ. Electrochem. Soc. 110, 1240 (1963).

    Google Scholar 

  4. J. F. O'Hanlon and M. Sampogna,J. Vac. Sci. Technol. 10, 450 (1973).

    Google Scholar 

  5. S. Gourrier, A. Mircea, and M. Bacal,Thin Solid Films 65, 315 (1980).

    Google Scholar 

  6. G. Olive, D. L. Pulfrey, and L. Young,Thin Solid Films 12, 427 (1972).

    Google Scholar 

  7. R. P. H. Chang,Thin Solid Films 56, 89 (1979).

    Google Scholar 

  8. K. Ando and K. Matsumura,Thin Solid Films 52, 173 (1978).

    Google Scholar 

  9. K. Yamasaki and T. Sugano,J. Vac. Sci. Technol. 17, 959 (1980).

    Google Scholar 

  10. W. Ranke and K. Jacobi,Surf. Sci. 47, 525 (1975).

    Google Scholar 

  11. J. D. Leslie, V. Keith, and Knorr,J. Electrochem. Soc. 125, 44 (1978).

    Google Scholar 

  12. S. Gourrier, P. Dimitriou, J. B. Theeten, J. Perriere, J. Siejka, and M. Croset,Appl. Phys. Lett. 38, 33 (1981).

    Google Scholar 

  13. J. R. Ligenza,J. Appl. Phys. 36, 2703 (1965); J. Kraitschmann,J. Appl. Phys. 38, 4323 (1967); J. Musil, F. Zacek, L. Bardos, G. Loncar, and R. Dragila,J. Phys. D 12, L61 (1979).

    Google Scholar 

  14. D. J. Coleman, D. W. Shaw, and R. D. Dobrott,J. Electrochem. Soc. 124, 239 (1977).

    Google Scholar 

  15. G. Amsel and D. Samuel,J. Phys. Chem. Solids 23, 1707 (1962).

    Google Scholar 

  16. V. Q. Ho and T. Sugano, Proc. of the 3rd Int. Conf. on Solid State Devices, Tokyo, 1979.

  17. R. P. H. Chang, C. C. Chang, and S. Darack,Appl. Phys. Lett. 36, 999 (1980).

    Google Scholar 

  18. P. Friedel, S. Gourrier, and P. Dimitriou, unpublished.

  19. H. Hasegawa and H. L. Hartnagel,J. Electrochem. Soc. 123, 713 (1976).

    Google Scholar 

  20. L. A. Chesler and G. Y. Robinson,J. Vac. Sci. Technol. 15, 1525 (1978).

    Google Scholar 

  21. D. L. Pulfrey and J. J. Reche,Solid State Electron. 17, 627 (1974).

    Google Scholar 

  22. A. T. Fromhold, Jr.,J. Electrochem. Soc. 124, 538 (1977).

    Google Scholar 

  23. V. Labunov, V. Parkhutik, and E. Tkharev,J. Cryst. Growth 45, 399 (1978).

    Google Scholar 

  24. P. Friedel, S. Gourrier, and P. Dimitriou,J. Electrochem. Soc. 128, 1857 (1981).

    Google Scholar 

  25. S. M. Sze,Physics of Semiconductor Devices (Wiley, New York, 1969).

    Google Scholar 

  26. J. D. Swift and M. J. R. Schwar,Electrical Probes for Plasma Diagnostics (Iliffe Books, London, 1970).

    Google Scholar 

  27. J. W. Coburn and H. F. Winters,J. Appl. Phys. 50, 3189 (1979).

    Google Scholar 

  28. J. R. Ligenza and M. Kuhn,Solid State Technol. December 1970, p. 33.

  29. A. Y. Wong, R. Stenzel, D. Arnush, B. D. Fried, C. Kennel, and R. Heim,Bull. Am. Phys. Soc. 17, 1017 (1972).

    Google Scholar 

  30. R. P. H. Chang,J. Vac. Sci. Technol. 14, 278 (1977).

    Google Scholar 

  31. T. Tsuchimoto,J. Vac. Sci. Technol. 15, 70, 1730 (1978).

    Google Scholar 

  32. E. B. Hooper, Lawrence Livermore Lab. Report, UCID-16821 (1975).

  33. K. W. Ehlers and K. N. Leung,Rev. Sci. Instrum. 51, 121 (1980).

    Google Scholar 

  34. J. Matisoo,Sci. Am., 38–53 (May 1980).

  35. J. H. Greiner,J. Appl. Phys. 45, 32 (1974).

    Google Scholar 

  36. T. Sugano, F. Koshiga, K. Yamasaki, and S. Takahashi,Proc. IEEE, ED 27, 449 (1980).

    Google Scholar 

  37. N. Yokoyama, T. Mimura, H. Kusakawa, K. Suyama, and M. Fukuta,Proc. IEEE, M.T.T. 28, 483 (1980).

    Google Scholar 

  38. S. Gourrier, A. Mircea, J. B. Theeten, and M. Bacal, Proc. of the 4th Int. Symp. on Plasma Chemistry, Zurich, 1979.

  39. R. P. H. Chang, J. J. Coleman, A. J. Polack, L. C. Feldman, and C. C. Chang,Appl. Phys. Lett. 34, 237 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourrier, S., Bacal, M. Review of oxide formation in a plasma. Plasma Chem Plasma Process 1, 217–232 (1981). https://doi.org/10.1007/BF00568831

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00568831

Key words

Navigation