Skip to main content
Log in

On-line determination of texture-dependent materials properties

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Macroscopic properties of polycrystalline materials may strongly depend on crystal orientation distribution, i.e., the texture of the material. This applies to all kinds of crystallographically anisotropic volume and boundary properties. The necessary texture parameters can be determined from a low number of intensity values measured with a fixed-angle, X-ray texture analyzer which is particularly suited for on-line determination. Alternatively, the texture-property relationship can be used to calculate the texture parameters from property measurement in different sample direction. On-line measurement of the texture can also be used as an indicator for other materials properties such as recrystallization or fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Bunge and H. Weiland, Orientation correlation in grain and phase boundaries,Textures Microstruct. 7:231–264 (1988).

    Google Scholar 

  2. J. F. Nye,Physical Properties of Crystals (Clarendon Press, Oxford, 1957).

    Google Scholar 

  3. H. J. Bunge,Texture Analysis in Materials Science (Butterworths Publ., 1982).

  4. H. J. Bunge, Über die elastischen konstanten kubischer materialien mit beliebiger Textur,Kristall Technik 3:431–438 (1968).

    Google Scholar 

  5. H. J. Bunge, Some applications of the Taylor theory of polycrystal plasticity,Kristall Technik 6:325–334 (1971).

    Google Scholar 

  6. W. T. Roberts and H. J. Bunge, Orientation distribution, elastic and plastic anisotropy in stabilized steel sheet,J. Appl. Cryst. 2:116–128 (1969).

    Google Scholar 

  7. M. Schulze, H. J. Bunge, and D. Grzesik,Calculation of the Yield Locus of Polycrystalline Materials According to the Taylor Theory (Peine + Salzgitter Berichte, Sonderheft, 1980).

  8. D. Grzesik, H. J. Bunge, and M. Schulze, The yield locus and plastic anisotropy of polycrystalline materials,Lett. Appl. Eng. Sci. 19:737–745 1981).

    Google Scholar 

  9. H. J. Bunge, Textur und Anisotropie,Z. Metallkunde 70:411–418 (1979).

    Google Scholar 

  10. C. A. Stickels and P. R. Mould, The use of Young's modulus for predicting the plastic-strain ratio of low-carbon steel sheets,Met. Trans. 1:1303–1312 (1970).

    Google Scholar 

  11. H. J. Bunge, Texture analysis — A method of nondestructive testing, inNondestructive Characterization of Materials, P. Hölleret al. eds. (1989), p. 241–267.

  12. P. Blandford and J. A. Szpunar, On-line texture measurements for the prediction of the anisotropy of magnetic properties,Textures Microstruct. 11:249–260 (1989).

    Google Scholar 

  13. J. Greven and G. Wassermann,Texturen Metallischer Werkstoffe (Springer Verlag, Berlin, 1962).

    Google Scholar 

  14. S. S. Lee, R. B. Thompson, and J. F. Smith, Inference of stress and texture from the angular dependence of ultrasonic plate mode velocities, inNDE of Microstructure for Process Control, H. N. G. Wadley, ed. (ASM, Metals Park, Ohio, 1985), pp. 73–79.

    Google Scholar 

  15. O. Cassier, C. Donadille, and B. Bacroix, Lankford coefficient evaluation in steel sheets by an ultrasonic methods, inNon-Destructive Characterization of Materials, P. Höller et al. eds. (1989), pp. 303–311.

  16. Y. Li, J. F. Smith, and R. B. Thompson, Characterization of textures in plates by ultrasonic plate wave velocities, inNon-Destructive Characterization of Materials, P. Hölleret al. eds. (1989), pp. 312–319.

  17. M. Spies and E. Schneider, Nondestructive analysis of the deep drawing behaviour of rolled sheets with ultrasonic techniques, inNondestructive Characterization of Materials, P. Hölleret al. eds. (1989) pp. 296–302.

  18. E. Schneider and M. Spies, Non-destructive analysis of textures in rolled sheets by ultrasonic techniques,Textures Microstruct. 12:212–232 (1990).

    Google Scholar 

  19. M. Spies and E. Schneider, Non-destructive analysis of the deep-drawing behaviour of rolled sheets with ultrasonic techniques, inAdvances and Applications of Quantitative Texture Analysis, H. J. Bunge, ed. (DGM Informationsgesellschaft, Oberursel, 1991), pp. 167–174.

    Google Scholar 

  20. M. Spies and K. Salama, Texture of metal-matrix composites by ultrasonic velocity measurement,Res. Nondestr. Eval. 1:99–109 (1989).

    Google Scholar 

  21. M. Spies and K. Salama, Relationship between elastic anisotropy and texture in metal-matrix composites,Ultrasonics 28:370–374 (1990).

    Google Scholar 

  22. A. Wilbrand, W. Repplinger, G. Hübschen, and H. J. Salzburger, EMUS—system for stress and texture evaluation by ultrasonic, inNondestructive Characterization of Materials, P. Hölleret al., eds., (1989), pp. 681–690.

  23. H. J. Bunge, The effective elastic constants of textured polycrystals in second order approximation,Kristall Technik 9:413–423 (1974).

    Google Scholar 

  24. K. Sakata, D. Daniel, and J. J. Jonas, Estimation of 8th, 10th and 12th order ODF coefficients from elastic properties in cold rolled steel sheets by adjustment of single crystal elastic constants,Textures Microstruct. 12:175–186 (1990).

    Google Scholar 

  25. K. Sakata, D. Daniel, and J.J. Jonas, Estimation of 4th and 6th order ODF coefficients from elastic properties in cold rolled steel sheets,Textures Microstuct. 11:41–56 (1989).

    Google Scholar 

  26. H. J. Bunge, Partial texture analysis,Textures Microstruct. 12:47–64 (1990).

    Google Scholar 

  27. F. Wagner and H. J. Bunge, Low-resolution texture analysis, inAdvance and Applications of Quantitative Texture Analysis, H. J. Bunge and C. Esling, eds. (DGM Informationsgesellschaft, Oberursel, 1991), pp. 147–152.

    Google Scholar 

  28. W. Bötticher and H. J. Kopineck, Über ein röntgentexturmeßverfahren zur zerstörungsfreien on-line bestimmung technologischer kenwerte von kaltgewalzten stahlbändern,Stahl Eisen 105:509–516 (1985).

    Google Scholar 

  29. H. J. Kopineck, On-line texture measurement in a production line, inExperimental Techniques of Texture Analysis, H.J. Bunge, ed. (DGM Informationsgesellschaft, Oberursel, 1986), pp. 171–182.

    Google Scholar 

  30. H. J. Kopineck and H. Otten, Texture analyzer for on-liner m -value estimation,Textures Microstruct. 7:97–114 (1987).

    Google Scholar 

  31. H. J. Kopineck and H. J. Bunge, A fixed angle texture analyzer for texture inspection and property control in sheet production lines, inDirectional Properties of Materials H. J. Bunge, ed. (DGM Informationsgesellschaft, Oberursel, 1988), pp. 251–262.

    Google Scholar 

  32. C. O. Ruud and D. J. Snoha, Characterization of crystallographic texture in aluminum can stock by X-ray diffraction, inNon-Destructive Characterization of Materials, P. Hölleret al., eds. (1989), pp. 267–272.

  33. H. J. Bunge and F. Wang, Computational problems in low-resolution texture analysis, inTheoretical Methods of Texture Analysis, H. J. Bunge, ed. (DGM Informationsgesellschaft, Oberursel, 1987), pp. 163–172.

    Google Scholar 

  34. H. B. Otten, Zur bestimmung von texturabhängigen werkstoffeigenschaften mittels eincs on-line röntgentexturanalysators,Thesis Clausthal (1988).

  35. F. Wagner, H. Otten, H. J. Kopineck, and H. J. Bunge, Computer aided optimization of an on-line texture analyzer, inNon-Destructive Characterization of Materials, P. Hölleret al., eds. (1989), pp. 281–288.

  36. H. J. Bunge, H. J. Kopineck, and F. Wagner, On-line texture analysis for magnetic property control,Textures Microstruct. 11:261–267 (1989).

    Google Scholar 

  37. H. J. Kopineck, Industrial application of on-line texture measurement, inNon-Destructive Characterization of Materials, P. Hölleret al., eds. (1989), pp. 740–752.

  38. H. J. Kopineck, H. Otten, and H. J. Bunge, On-line measuring of technological data of cold and hot rolled steel strips by a fixed angle texture analyzer, inNondestructive Characterization of Materials, P. Hölleret al., eds. (1989), 753–762.

  39. H. J. Kopinek and H. Otten, Industrial application of on-line texture measurement. InAdvances and Applications of Quantitative Texture Analysis, H. J. Bunge, ed. (DGM Informationsgesellschaft, Oberursel, 1991), pp. 153–166.

    Google Scholar 

  40. H. J. Kopineck, Industrial on-line texture determination in rolled steel strips,J. Nondestr. Eval. 12:13–19 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunge, H.J. On-line determination of texture-dependent materials properties. J Nondestruct Eval 12, 3–11 (1993). https://doi.org/10.1007/BF00565903

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00565903

Key words

Navigation