Skip to main content
Log in

Stress corrosion cracking of Al-Zn-Mg alloy AA-7039 by slow strain-rate method

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stress corrosion behaviour of Al-Zn-Mg alloy AA-7039 in an aqueous 3.5 wt % Nad solution (pH=1) was studied with the specimens under constant strain rate as function of ageing state and cold working. The tests were carried out at temperatures of 30 and 45°C and strain rates between 7.6×10−7 and 7.6×10−6 sec−1 and the apparent activation energy for mechanical deformation in oil and stress corrosion cracking (SCC) process in NaCl solution were determined. The fracture energy in NaCl solution under constant strain rate, as compared with experiments in oil, was lowered in the overaged specimens and markedly lowered in sequence of the peak-aged and the underaged specimens. The values of fracture energy for peak-aged and overaged specimens were nearly similar to those in oil at the higher strain rate of 7.6×10−6 sec−1. The relative fracture energy was comparatively lowered in the fine-grained specimens, as compared to coarsegrained specimens. The apparent activation energy for mechanical processes in oil was found to be 103 kJ mol−1 in the peak-aged and 96.5 kJ mol−1 in the overaged specimens. Those for SCC processes in NaCl solution were 47.5 kJ mol−1 in the peak-aged and 51.5 kJ mol−1 in the overaged specimens. The results suggest that stress corrosion (SC) cracks are initiated by electrochemical dissolution of grain boundaries (gbs) and propagated by mechanical processes such as creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Kent,J. Inst. Met. 97 (1969) 127.

    Google Scholar 

  2. Idem, J. Aust. Inst. Met. 15 (1970) 171.

    Google Scholar 

  3. P. N. T. Unwin andR. B. Nicholson,Acta Metall. 17 (1969) 1379.

    Google Scholar 

  4. P. N. Adler, R. Deiasi andG. Geschwind,Met. Trans. 3 (1972) 3191.

    Google Scholar 

  5. I. T. Taylor andR. L. Edgar,ibid. 2 (1971) 833.

    Google Scholar 

  6. P. Doig andJ. W. Edington,Met. Trans. A 6A (1975) 943.

    Google Scholar 

  7. Idem, Corrosion-NACE 31 (1975) 347.

    Google Scholar 

  8. P. Doig, P. E. J. Flewitt andJ. W. Edington,ibid. 33 (1977) 217.

    Google Scholar 

  9. W. Gruhl, B. Grzemba andL. Ratke, 7th International Leichtmetall-Tagung (Montanuniversität, Leoben, 1981) p. 124.

    Google Scholar 

  10. G. Thomas andJ. Nutting,J. Inst. Met. 88 (1959–1960) 81.

    Google Scholar 

  11. A. J. Sedriks, P. W. Slattery andE. N. Pugh,Trans. ASM 62 (1969) 238.

    Google Scholar 

  12. Idem, ibid. 62 (1969) 815.

    Google Scholar 

  13. A. J. Sedriks, J. A. S. Green andD. L. Novak,Met. Trans. 1 (1970) 1815.

    Google Scholar 

  14. W. Gruhl,Aluminium 38 (1962) 775.

    Google Scholar 

  15. W. Gruhl andH. Cordier,Z. Metallkde. 55 (1964) 577.

    Google Scholar 

  16. Idem, Aluminium 44 (1968) 403.

    Google Scholar 

  17. W. Gruhl andF. Ostermann, Berichte zum Symposium der Deutsche Gesellschaft Metallkunde, “Festigkeit metallischer Werkstoffe” (DGM, Bad Nauheim, 1974) pp. 387–410.

    Google Scholar 

  18. H. A. Holl,Corrosion-NACE 23 (1967) 173.

    Google Scholar 

  19. M. O. Speidel,Phys. Status Solidus 22 (1967) K71.

    Google Scholar 

  20. Idem, Proceedings of the Conference on Fundamental Aspects of SCC, The Ohio State University, September 1967 (NACE, Houston, Texas, 1969) pp. 561–79.

    Google Scholar 

  21. A. J. De Ardo Jr andR. D. Townsend,Met. Trans. 1 (1970) 2573.

    Google Scholar 

  22. W. Gruhl,Z. Metallkde. 53 (1962) 670.

    Google Scholar 

  23. M. Landkof andL. Galor,Corrosion-NACE 36 (1980) 241.

    Google Scholar 

  24. M. Henthorne andR. N. Parkins,Br. Corros. J. 2 (1967) 186.

    Google Scholar 

  25. R. N. Parkins, F. Mazza, J. J. Royuela andJ. Scully,Werkst. Korros. 23 (1972) 1020; 1124 [Br. Corros. J. 7 (1972) 154].

    Google Scholar 

  26. M. Takano,Corrosion-NACE 30 (1974) 441.

    Google Scholar 

  27. H. Buhl,ASTMSTP 665 (1979) 333.

    Google Scholar 

  28. S. I. Pyun,Metall. 38(3) (1984) in press.

  29. H. Conrad andH. Wiedersich,Acta. Metall. 8 (1960) 128.

    Google Scholar 

  30. H. Conrad,J. Iron Steel Inst. 198 (1961) 364.

    Google Scholar 

  31. W. W. Gerberich andW. E. Wood,Met. Trans. 5 (1974) 1295 (citation).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y., Kim, H.C. & Pyun, S.I. Stress corrosion cracking of Al-Zn-Mg alloy AA-7039 by slow strain-rate method. J Mater Sci 19, 1517–1521 (1984). https://doi.org/10.1007/BF00563047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00563047

Keywords

Navigation