Skip to main content
Log in

Structural Properties and State of a Zirconium Dioxide Surface Layer Modified with Mе3+ Cations

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect Ме3+ (Al, Y, Sc, Fe, and Mn) cations on the structural properties and state of a zirconium dioxide surface layer is investigated. The thermal stability of the Ме3+ solid solutions based on a metastable zirconium dioxide modification is established via X-ray diffraction analysis. It is shown using X‑ray photoelectron spectroscopy that the distribution of surface–volume cationic modifier is determined by the type of cation. In Al-, Fe-, and Mn-ZrO2 systems, modifiers are mainly distributed over a surface; in Y and Sc-ZrО2, modifiers are distributed uniformly. The nature of the cation distribution affects the thermal stability of the solid solutions formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. O. V. Al’myasheva, B. A. Fedorov, A. V. Smirnov, and V. V. Gusarov, Nanosist.: Fiz., Khim. Mat. 1 (1), 26 (2010).

    Google Scholar 

  2. N. K. Oh, J. T. Kim, G. Kang, et al., Appl. Surf. Sci. 394, 231 (2017).

    Article  CAS  Google Scholar 

  3. J. D. Fidelus, W. Lojkowski, D. Millers, et al., Solid State Phenom. 128, 141 (2007).

    Article  CAS  Google Scholar 

  4. M. Mamak, N. Coombs, and G. A. Ozin, Chem. Mater. 13, 3564 (2001).

    Article  CAS  Google Scholar 

  5. V. V. Popov and A. A. Pisarev, Materials and Processes of Production of Thermal Barrier Coating (NIYaU MIFI, Moscow, 2016) [in Russian].

  6. H. Th. Rijnten, in Physical and Chemical Aspects of Adsorbents and Catalysts, Ed. by B. G. Linsen (Academic, London, New York, 1970; Mir, Moscow, 1973).

  7. P. N. Kuznetsov, L. I. Kuznetsova, and A. M. Zhizhaev, in Fundamental Principles of Mechanochemical Activation, Mechanosynthesis and Mechanochemical Technologies, Ed. by V. V. Boldyrev et al., Vol. 19 of Integration Projects of Siberian Branch of RAS (Sib. Otdel. RAN, Novosibirsk, 2009), pp. 68–86 [in Russian].

  8. P. N. Kuznetsov, L. I. Kuznetsova, V. P. Tverdokhlebov, and A. L. Sannikov, Khim. Tekhnol., No. 2, 7 (2005).

  9. A. V. Ivanov and L. M. Kustov, Ross. Khim. Zh. 44, 21 (2000).

    CAS  Google Scholar 

  10. Nanomaterials: Properties and Perspective Applications, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2015) [in Russian].

    Google Scholar 

  11. A. V. Smirnov, B. A. Fedorov, M. V. Tomkovich, O. V. Al’myasheva, and V. V. Gusarov, Dokl. Phys. Chem. 59, 71 (2014).

    Article  CAS  Google Scholar 

  12. M. J. Mayo, A. Suresh, and W. D. Porter, Rev. Adv. Mater. Sci. 5, 100 (2003).

    CAS  Google Scholar 

  13. G. K. Karagedov, S. S. Shatskaya, and N. Z. Lyakhov, Khim. Inter. Ustoich. Razvit. 14, 369 (2006).

    CAS  Google Scholar 

  14. A. B. Yaroslavtsev, Solid State Chemistry (Nauchnyi Mir, Moscow, 2009) [in Russian].

    Google Scholar 

  15. P. N. Kuznetsov, A. V. Kazbanova, L. I. Kuznetsova, et al., React. Kinet. Mech. Catal. 113, 69 (2014).

    Article  CAS  Google Scholar 

  16. M. A. Cortes-Jacome, C. Angeles-Chavez, and E. Lopes-Salinas, Appl. Catal., A 318, 178 (2007).

  17. L. G. Karakchiev, E. G. Avvakumov, O. B. Vinokurova, A. A. Gusev, and N. Z. Lyakhov, Russ. J. Inorg. Chem. 48, 1447 (2003).

    Google Scholar 

  18. P. N. Kuznetsov, L. I. Kuznetsova, A. M. Zhyzhaev, et al., Appl. Catal., A 227, 299 (2002).

  19. O. V. Pozhidaeva, E. N. Korytkova, D. P. Romanov, and V. V. Gusarov, Russ. J. Gen. Chem. 72, 849 (2002).

    Article  CAS  Google Scholar 

  20. R. C. Garvie, J. Phys. Chem. 69, 1238 (1965).

    Article  CAS  Google Scholar 

  21. G. D. Yadav and J. J. Nair, Microporous Mesoporous Mater. 33, 1 (1999).

    Article  CAS  Google Scholar 

  22. K. Arata, Appl. Catal., A 146, 3 (1996).

  23. A. le Bail, Y. Gao, J. L. Fourquet, and C. Jacoboni, Mater. Res. Bull. 25, 831 (1990).

    Article  CAS  Google Scholar 

  24. D. G. Barton, S. L. Soled, G. D. Meitzner, et al., J. Catal. 181, 57 (1999).

    Article  CAS  Google Scholar 

  25. A. Kaddouri, C. Mazzocchia, E. Tempesti, and R. Anouchinsky, J. Therm. Anal. 53, 97 (1998).

    Article  CAS  Google Scholar 

  26. R. D. Shannon and C. N. Prewitt, Acta. Crystallogr. 26, 925 (1969).

    Article  Google Scholar 

  27. R. G. Silver, C. J. Hou, and J. G. Ekerdt, J. Catal. 118, 400 (1989).

    Article  CAS  Google Scholar 

  28. X. Bokhimi, A. Morales, A. Garcia-Ruiz, et al., J. Solid State Chem. 142, 409 (1999).

    Article  CAS  Google Scholar 

  29. C. D. Wagner, J. F. Moulder, L. E. Davis, and W. M. Riggs, Handbook of X-ray Photoelectron Spectroscopy (Perking-Elmer, Eden Prairie, MN, 1979).

    Google Scholar 

  30. W. Wang, S. Hu, Y. Han, et al., Surf. Sci. 653, 205 (2016).

    Article  CAS  Google Scholar 

  31. M. Chun, M. J. Moon, J. Park, and Y. C. Kang, Bull. Korean Chem. Soc. 30, 2729 (2009).

    Article  CAS  Google Scholar 

  32. G. M. Ingo and G. Marletta, Nucl. Instrum. Methods Phys. Res., Sect. B 116, 440 (1996).

    CAS  Google Scholar 

  33. C. Morant, J. M. Sanz, L. Galan, et al., Surf. Sci. 218, 331 (1989).

    Article  CAS  Google Scholar 

  34. A. F. Bedilo, M. A. Plotnikov, N. V. Mezentseva, et al., Phys. Chem. Chem. Phys. 7, 3059 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. S. Ntais, R. J. Isaifan, and E. A. Baranova, Mater. Chem. Phys. 148, 673 (2014).

    Article  CAS  Google Scholar 

  36. D. W. Strickler and W. G. Carlson, J. Am. Ceram. Soc. 48, 286 (1965).

    Article  CAS  Google Scholar 

  37. H. Fujimori, M. Yashima, M. Kakihana, and M. Yoshimura, J. Am. Ceram. Soc. 81, 2885 (1998).

    Article  CAS  Google Scholar 

  38. K. S. Jeong, J. Song, D. Lim, et al., Appl. Surf. Sci. 320, 128 (2014).

    Article  CAS  Google Scholar 

  39. M. Muchler, R. Schlogl, and G. Erlt, J. Catal. 138, 413 (1992).

    Article  Google Scholar 

  40. T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).

    Article  CAS  Google Scholar 

  41. L. I. Kuznetsova, A. V. Kazbanova, Yu. L. Mikhlin, A. M. Zhizhaev, and P. N. Kuznetsov, Russ. J. Phys. Chem. A 84, 1939 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Obukhova.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, L.I., Obukhova, A.V., Bondarenko, G.N. et al. Structural Properties and State of a Zirconium Dioxide Surface Layer Modified with Mе3+ Cations. Russ. J. Phys. Chem. 92, 1799–1805 (2018). https://doi.org/10.1134/S0036024418090145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418090145

Keywords:

Navigation