Skip to main content
Log in

Electrical conductivity of polycrystalline tin dioxide and its solid solution with ZnO

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrical conductivity (σ) of “pure” and ZnO doped SnO2 has been measured at different temperatures and oxygen partial pressures (\(p_{{\text{O}}_{\text{2}} } \))- From the variation of electrical conductivity of these materials three partial pressure ranges have been identifieD. In the high partial pressure rangeσ increases with decreasing\(p_{{\text{O}}_{\text{2}} } \) followed by a\(p_{{\text{O}}_{\text{2}} } \) independent region at lower\(p_{{\text{O}}_{\text{2}} } \) ´s and finally increases once again with a further decrease of\(p_{{\text{O}}_{\text{2}} } \). These variations have been explained on the basis of an anti-Frenkel type defect structure and an interstitial solid solution of ZnO in SnO2. The activation energy for the conduction process has been estimated and the values are found to differ in two different temperature ranges. In the low temperature range the conductivity is attributed mainly to the chemisorption of oxygen on the surface of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. W. Burkett,J. Brit. IRE 21 (1961) 1.

    Google Scholar 

  2. J. W. Ward,Appl. Ind. 18 (1955) 408.

    Google Scholar 

  3. H. A. Klasens andH. Koelmans,Solid-State Electron. 7 (1964) 701.

    Google Scholar 

  4. A. Aoki andH. Sasakura,Jpn. J. Appl. Phys. 9 (1970) 582.

    Google Scholar 

  5. L. Holland andG. Siddal,Vacuum 3 (1953) 375.

    Google Scholar 

  6. K. A. Kostanyan, A. F. Melik-Akhnazarov, L. A. Mkrtchyan, K. M. Tatebosyan andL. T. Grigoryan,Steklo Keram 8 (1971) 12.

    Google Scholar 

  7. R. E. Aitchison,Aust. J. Appl. Sci. 5 (1954) 10.

    Google Scholar 

  8. K. Ishiguro, T. Sasaki, T. Arai andI. Imai,J. Phys. Soc. Jpn. 13 (1958) 296.

    Google Scholar 

  9. T. Arai,J. Electrochem. Soc. 15 (1960) 916.

    Google Scholar 

  10. E. E. Kohnke,J. Phys. Chem. Solids 23 (1962) 1557.

    Google Scholar 

  11. H. J. Van Daal,Solid State Commun. 6 (1968) 5.

    Google Scholar 

  12. S. Samson andC. G. Fonstad,J. Appl. Phys. 44 (1973) 4618.

    Google Scholar 

  13. R. W. Mar,J. Phys. Chem. Solids 33 (1972) 220.

    Google Scholar 

  14. Y. K. Agarwal, D. W. Short, R. Gruenke andR. A. Rapp,J. Electrochem. Soc. 121 (1974) 357.

    Google Scholar 

  15. R. D. Shannon andC. T. Prewitt,Acta Crystallogr. B25 (1969) 925.

    Google Scholar 

  16. H. E. Matthews andE. E. Kohnke,J. Phys. Chem. Solids 29 (1968) 653.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paria, M.K., Maiti, H.S. Electrical conductivity of polycrystalline tin dioxide and its solid solution with ZnO. J Mater Sci 18, 2101–2107 (1983). https://doi.org/10.1007/BF00555004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555004

Keywords

Navigation