Skip to main content
Log in

Structure of hydrated tin dioxide doped with Sb(III) ions

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of antimony doping of tin dioxide at Sb/Sn = 0.2–2.5 on the physical properties and structure of air-dry samples of hydrous tin dioxide, SnO2 ∙ nH2O (HTD), was studied by IR and Raman spectroscopy, powder X-ray diffraction, impedance measurements, TGA, and electron microscopy. The doped materials retained the structure of undoped HTD materials if the Sb/Sn ratio did not exceed the threshold value of 1.0. When Sb/Sn > 1, crystalline antimony oxide admixture appeared. The data of IR spectroscopy attested to the presence of two types of water in HTD-Sb, namely, physisorbed and chemisorbed water. The major part of water of the former type can be removed by evacuation at room temperature. Chemisorption occurs upon coordination of water molecules by metal ions through the formation of metal–oxygen bonds. Water molecules of the latter type are retained in evacuated samples at room temperature and on heating above the boiling point of liquid water. By impedance spectroscopy, HTD-Sb samples were shown to possess fairly high proton conductivity at high humidity; however, the conductivity decreased by two orders of magnitude after partial removal of water molecules of the former type. This attests to the destruction of the loosely bound hydrogen bond network, across which proton transfer takes place. It was also found that under conditions of constant humidity, the proton conductivity successively decreases with increasing antimony concentration. This is attributable to the fact that Sb(III) ions polarize the local environment to a lesser extent than Sn(IV) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Ivanov, I. A. Sidorak, A. A. Shubin, and L. T. Denisova, J. Siberian Fed. Univ. Eng. Technol. 2, 189 (2010).

    Google Scholar 

  2. D. Vayfrey, M. Ben Khilifa, M. P. Besland, et al., Proc. SPIE—Int. Soc. Opt. Eng. 4464, 103 (2002).

    Google Scholar 

  3. J. Rockenberger, U. Felde, M. Tisher, et al., J. Chem. Phys. 112, 4296 (2000).

    Article  CAS  Google Scholar 

  4. R. Koivula, R. Harjula, and J. Lehto, Micropor. Mesopor. Mater. 55, 231 (2002).

    Article  CAS  Google Scholar 

  5. V. Müller, M. Rasp, G. Stefanic, et al., Chem. Mater. 21, 5229 (2009).

    Article  Google Scholar 

  6. Yu. Dobrovolsky, L. Leonova, and A. Vakulenko, Solid State Ionics 86–88, 1017 (1996).

  7. D. R. Pyke, R. Reid, and R. J. D. Tilley, J. Solid State Chem. 25, 231 (1978).

    Article  CAS  Google Scholar 

  8. D. R. Pyke, R. Reid, and R. J. D. Tilley, J. Chem. Soc., Faraday Trans. 1, 1174 (1980).

    Article  Google Scholar 

  9. J. L. Portefaix, P. Bussiere, M. Forissier, et al., J. Chem. Soc., Faraday Trans. 1, 1652 (1980).

    Article  Google Scholar 

  10. Yu. E. Roginskaya, D. A. Dulin, S. S. Stroeva, et al., Kinet. Katal. 9, 1143 (1968).

    CAS  Google Scholar 

  11. T. N. Fetisova, V. R. Mirolyubov, and S. F. Katyshev, Russ. J. Gen. Chem. 77, 1643 (2007).

    Article  CAS  Google Scholar 

  12. F. J. Berry and C. Greavez, J. Chem. Soc., Dalton Trans., 2447 (1981).

    Google Scholar 

  13. F. J. Berry and B. J. Laundy, J. Chem. Soc., Dalton Trans., 1442 (1981).

    Google Scholar 

  14. Yu. Dobrovolsky, L. Leonova, S. Nadkhina, and N. Panina, Solid State Ionics 119, 275 (1999).

    Article  CAS  Google Scholar 

  15. Handbuch der präparativen anorganischen Chemie, Ed. by G. Brauer, (Ferdinand Enke, Stuttgart, 1975–1981; Mir, Moscow, 1887).

  16. A. V. Kostrikin, F. M. Spiridonov, I. V. Lin’ko, et al., Russ. J. Inorg. Chem. 52, 1098 (2007).

    Article  Google Scholar 

  17. L. M. Sharygin, S. M. Vovk, V. F. Gonchar, et al., Russ. J. Inorg. Chem 28, 576 (1983).

    CAS  Google Scholar 

  18. A. I. Karelin, L. S. Leonova, A. V. Arsatov, and Yu. A. Dobrovol’skii, Russ. J. Inorg. Chem 58, 563 (2013).

  19. A. I. Karelin, L. S. Leonova, A. V. Arsatov, and Yu. A. Dobrovol’skii, Russ. J. Inorg. Chem. 58, 711 (2013).

  20. L. M. Sharygin, T. A. Denisova, S. M. Vovk, et al., Russ. J. Inorg. Chem 30, 1968 (1985).

    CAS  Google Scholar 

  21. E. W. Thornton and P. G. Harrison, J. Chem. Soc., Faraday Trans. 71, 461 (1975).

    Article  CAS  Google Scholar 

  22. L. H. Little, Infrared Spectra of Adsorbed Molecules (Academic, London, 1966; Mir, Moscow, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Karelin.

Additional information

Original Russian Text © A.I. Karelin, N.S. Tkacheva, S.E. Nadkhina, L.S. Leonova, A.M. Kolesnikova, L.S. Usacheva, A.V. Levchenko, Yu.A. Dobrovol’skii, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 9, pp. 1201–1210.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karelin, A.I., Tkacheva, N.S., Nadkhina, S.E. et al. Structure of hydrated tin dioxide doped with Sb(III) ions. Russ. J. Inorg. Chem. 61, 1144–1152 (2016). https://doi.org/10.1134/S0036023616090084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616090084

Navigation