Skip to main content
Log in

Biology of tumors of the peripheral nervous system

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumors of the peripheral nervous system include neuroblastomas, pheochromocytomas, and neuroepitheliomas. Neuroblastomas and pheochromocytomas are adrenergic in origin and share certain genetic features, whereas neuroepitheliomas are thought to be cholinergic and are characterized by distinct genetic features. Neuroblastomas are characterized by deletion of the short arm of chromosome 1 (1p), amplification of theMYCN proto-oncogene, and hyperdiploidy in subsets of tumors. All three of these genetic features have prognostic value in subsets of patients. Allelic loss of 14q also occurs with increased frequency, but the prognostic importance of this abnormality is not known yet. Pheochromocytomas have not been studied as extensively, but allelic loss for 1p appears to be a frequent change, and no clear examples of oncogene activation have been identified to date. Neuroepitheliomas are characterized by translocation between chromosomes 11 and 22. Although they have a characteristic pattern of proto-oncogene expression, it is not clear that any of these oncogenes are activated specifically, and no sites of allelic loss have been identified to date. Thus, cytogenetic and molecular analysis of neuroblastomas, pheochromocytomas, and neuroepitheliomas are useful in distinguishing them from each other and from other tumors in selected cases. Furthermore, certain genetic markers are useful in predicting clinical behavior, especially for neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RFLP:

Restriction Fragment Length Polymorphism

LOH:

Loss Of Heterozygosity

dmins:

Double-minute chromatin bodies

HSR:

Homogeneously Staining Region

N:

myc-amplification of MYCN

References

  1. Brodeur GM, Fong CT: Molecular biology and genetics of human neuroblastoma. Cancer Genet Cytogenet 41: 153–174, 1989

    Google Scholar 

  2. Brodeur GM: Neuroblastoma-clinical applications of molecular parameters. Brain Path 1: 47–54, 1990

    Google Scholar 

  3. Brodeur GM: Molecular biology and genetics of human neuroblastoma. In: Pochedly C (ed) Neuroblastoma: Tumor Biology and Therapy. CRC Press, Inc, Boca Raton, 1990, pp 31–50.

    Google Scholar 

  4. Brodeur GM: Neuroblastoma: Clinical significance of genetic abnormalities. Cancer Surveys 9: 673–688, 1990

    Google Scholar 

  5. Brodeur G, Azar C, Brother M, Hiemstra J, Kaufman B, Marshall H, Moley J, Nakagawara A, Saylors R, Scavarda N, Schneider S, Wasson J, White P, Seeger R, Look T, Castleberry R: Neuroblastoma: Impact of genetic factors on prognosis and treatment. Cancer 68: 1991, pp (in press)

  6. Brodeur GM: Patterns and significance of genetic changes in neuroblastomas. In: Pretlow TP, Pretlow TG (eds) Biochemical and Molecular Aspects of Selected Tumors. Academic Press, Inc, Orlando, 1991, pp (in press)

    Google Scholar 

  7. Evans AE, D'Angio GJ, Seeger RC (eds) Advances in Neuroblastoma Research. Alan R Liss, Inc, New York, 1985

    Google Scholar 

  8. Evans AE, D'Angio GJ, Knudson AGJ, Seeger RC (eds) Advances in Neuroblastoma Research 2. Alan R Liss, Inc, New York, 1988

    Google Scholar 

  9. Pochedly C (ed) Neuroblastoma: Tumor Biology and Therapy. CRC Press, Boca Raton, 1990

    Google Scholar 

  10. Evans AE, D'Angio GJ, Knudson AGJ, Seeger RC (eds) Advances in Neuroblastoma Research 3. Wiley-Liss, New York, 1991

    Google Scholar 

  11. Biedler JL, Ross RA, Shanske S, Spengler BA: Human neuroblastoma cytogenetics: Search for significance of homogeneously staining regions and double minute chromosomes. Progr Cancer Res Ther 12: 81–96, 1980

    Google Scholar 

  12. Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA: Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41: 4678–4686, 1981

    Google Scholar 

  13. Gilbert F, Feder M, Balaban G, Brangman D, Lurie D, Podolsky R, Rinaldt V, Vinikoor N, Weisband J: Human neuroblastomas and abnormalities of chromosome 1 and 17. Cancer Res 44: 5444–5449, 1984

    Google Scholar 

  14. Look AT, Hayes FA, Nitschke R, McWilliams NB, Green AA: Cellular DNA content as predictor of response to chemotherapy in infants with unresectable neuroblastoma. New Engl J Med 311: 231–235, 1984

    Google Scholar 

  15. Gansler T, Chatten J, Varello M, Bunin GR, Atkinson B: Flow cytometric DNA analysis of neuroblastoma. Correlation with histology and clinical outcome. Cancer 58: 2453–2458, 1986

    Google Scholar 

  16. Taylor SR, Blatt J, Constantino JP, Roederer M, Murphy RF: Flow cytometric DNA analysis of neuroblastoma and ganglioneuroma. A 10-year retrospective study. Cancer 62: 749–754, 1988

    Google Scholar 

  17. Oppedal BR, Storm-Mathisen I, Lie SO, Brandtzaeg P: Prognostic factors in neuroblastoma. Clinical, histopathologic, immunohistochemical features and DNA ploidy in relation to prognosis. Cancer 62: 772–780, 1988

    Google Scholar 

  18. Brenner DW, Barranco SC, Winslow BH, Shaeffer J: Flow cytometric analysis of DNA content in children with neuroblastoma. J Pediatr Surg 24: 204–207, 1989

    Google Scholar 

  19. Look AT, Hayes FA, Shuster JJ, Douglas EC, Castleberry RP, Bowman LC, Smith EI, Brodeur GM: Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: A Pediatric Oncology Group Study. J Clin Oncol 9: 581–591, 1991

    Google Scholar 

  20. Cohn SL, Rademaker AW, Salwen HR, Franklin WA, Gonzales-Crussi F, Rosen ST, Bauer KD: Analysis of DNA ploidy and proliferative activity in relation to histology and N-myc amplification in neuroblastoma. Am J Pathol 136: 1043–1052, 1990

    Google Scholar 

  21. Taylor SR, Locker J: A comparative analysis of nuclear DNA content and N-myc gene amplification in neuroblastoma. Cancer 65: 1360–1366, 1990

    Google Scholar 

  22. Bourhis J, De Vathaire F, Wilson GD, Hartmann O, Terrier-Lacombe MJ, Boccon-Gibod L, McNally NJ, Lemerle J, Riou G, Bernard J: Combined analysis of DNA ploidy index and N-myc genomic content in neuroblastoma. Cancer Res 51: 33–36, 1991

    Google Scholar 

  23. Franke F, Rudolph B, Christiansen H, Harbott J, Lampert F: Tumour karyotype may be important in the prognosis of human neuroblastoma. J Cancer Res Clin Oncol 111: 266–272, 1986

    Google Scholar 

  24. Hayashi Y, Hanada R, Yamamoto K, Bessho F: Chromosome findings and prognosis in neuroblastoma. Cancer Genet Cytogenet 29: 175–177, 1986

    Google Scholar 

  25. Kaneko Y, Kanda N, Maseki N, Sakurai M, Tsuchida Y, Takeda T, Okabe I, Sakurai M: Different karyotypic patterns in early and advanced stage neuroblastomas. Cancer Res 47: 311–318, 1987

    Google Scholar 

  26. Christiansen H, Lampert F: Tumour karyotype discriminates between good and bad prognostic outcome in neuroblastoma. Br J Cancer 57: 121–126, 1988

    Google Scholar 

  27. Hayashi Y, Inabada T, Hanada R, Yamamoto K: Chromosome findings and prognosis in 15 patients with neuroblastoma found by VMA mass screening. J Pediatr 112: 67–71, 1988

    Google Scholar 

  28. Brodeur GM, Sekhon GS, Goldstein MN: Chromosomal aberrations in human neuroblastomas. Cancer 40: 2256–2263, 1977

    Google Scholar 

  29. Brodeur GM, Fong CT, Morita M, Griffith R, Hayes FA, Seeger RC: Molecular analysis and clinical significance of N-myc amplification and chromosome 1 abnormalities in human neuroblastomas. Progr Clin Biol Res 271: 3–15, 1988

    Google Scholar 

  30. Fong CT, Dracopoli NC, White PS, Merrill PT, Griffith RC, Housman DE, Brodeur GM: Loss of heterozygosity for chromosome 1p in human neuroblastomas: Correlation with N-myc amplification. Proc Natl Acad Sci USA 86: 3753–3757, 1989

    Google Scholar 

  31. Weith A, Martinsson T, Cziepluch C, Bruderlein S, Amler LC, Berthold F: Neuroblastoma consensus deletion maps to 1p36.1–2. Genes Chrom Cancer 1: 159–166, 1989

    Google Scholar 

  32. Bader S, Fasching C, Brodeur GM, Stanbridge E: Dissociation of suppression of tumorigenicity and differentiationin vitro effected by transfer of single human chromosomes into human neuroblastoma cells. Cell Growth Diff 2: 245–255, 1991

    Google Scholar 

  33. Suzuki T, Yokota J, Mugishima H, Okabe I, Ookuni M, Sugimura T, Terada M: Frequent loss of heterozygosity on chromosome 14q in neuroblastoma. Cancer Res 49: 1095–1098, 1989

    Google Scholar 

  34. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent JM: Amplified DNA with limited homology tomyc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305: 245–248, 1983

    Google Scholar 

  35. Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, Alt FW: Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35: 359–367, 1983

    Google Scholar 

  36. Montgomery KT, Biedler JL, Spengler BA, Melera PW: Specific DNA sequence amplification in human neuroblastoma cells. Proc Natl Acad Sci USA 80: 5724–5728, 1983

    Google Scholar 

  37. Schwab M, Varmus HE, Bishop JM, Grzeschik KH, Naylor SL, Sakaguchi AY, Brodeur G, Trent J: Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 308: 288–291, 1984

    Google Scholar 

  38. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124, 1984

    Google Scholar 

  39. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D: Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. New Engl J Med 313: 1111–1116, 1985

    Google Scholar 

  40. Brodeur GM, Seeger RC, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D: Clinical implications of oncogene activation in human neuroblastomas. Cancer 58: 541–545, 1986

    Google Scholar 

  41. Tsuda T, Obara M, Hirano H, Gotoh S, Kubomura S, Higashi K, Kuroiwa A, Nakagawara A, Nagahara N, Shimizu K: Analysis of N-myc amplification in relation to disease stage and histologic types in human neuroblastomas. Cancer 60: 820–826, 1987

    Google Scholar 

  42. Nakagawara A, Ikeda K, Tsuda T, Higashi K, Okabe T: Amplification of N-myc oncogene in stage II and IVS neuroblastomas may be a prognostic indicator. J Pediatr Surg 22: 415–418, 1987

    Google Scholar 

  43. Bartram CR, Berthold F: Amplification and expression of the N-myc gene in neuroblastoma. Eur J Pediatr 146: 162–165, 1987

    Google Scholar 

  44. Brodeur GM, Hayes FA, Green AA, Casper JT, Wasson J, Wallach S, Seeger RC: Consistent N-myc copy number in simultaneous or consecutive neuroblastoma samples from sixty individual patients. Cancer Res 47: 4248–4253, 1987

    Google Scholar 

  45. Grady-Leopardi EF, Schwab M, Ablin AR, Rosenau W: Detection of N-myc expression in human neuroblastoma byin situ hybridization and blot analysis: Relationship to clinical outcome. Cancer Res 46: 3196–3199, 1986

    Google Scholar 

  46. Seeger RC, Wada R, Brodeur GM, Moss TJ, Bjork RL, Sousa L, Slamon DJ: Expression of N-myc by neuroblastomas with one or multiple copies of the oncogene. Progr Clin Biol Res 271: 41–49, 1988

    Google Scholar 

  47. Nisen PD, Waber PG, Rich MA, Pierce S, Garvin JRJ, Gilbert F, Lanskowsky P: N-myc oncogene RNA expression in neuroblastoma. J Natl Cancer Inst 80: 1633–1637, 1988

    Google Scholar 

  48. Slavc I, Ellenbogen R, Jung W-H, Vawter GF, Kretschmar C, Grier H, Korf BR:Myc gene amplification and expression in primary human neuroblastoma. Cancer Res 50: 1459–1463, 1990

    Google Scholar 

  49. Hayashi Y, Kanda N, Inaba T, Hanada R, Nagahara N, Muchi H, Yamamoto K: Cytogenetic findings and prognosis in neuroblastoma with emphasis on marker chromosome 1. Cancer 63: 126–132, 1989

    Google Scholar 

  50. Shimizu K, Goldfarb M, Perucho M, Wigler M: Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci USA 80: 383–387, 1983

    Google Scholar 

  51. Taparowsky E, Shimizu K, Goldfarb M, Wigler M: Structure and activation of the human N-ras gene. Cell 34: 581–586, 1983

    Google Scholar 

  52. Ballas K, Lyons J, Jannsen JWG, Bartram CR: Incidence ofras gene mutations in neuroblastoma. Eur J Pediatr 147: 313–314, 1988

    Google Scholar 

  53. Ireland CM: Activated N-ras oncogenes in human neuroblastoma. Cancer Res 49: 5530–5533, 1989

    Google Scholar 

  54. Moley JF, Brother MB, Wells SA, Spengler BA, Biedler JL, Brodeur GM: Low frequency ofras gene mutations in neuroblastomas, pheochromocytomas and medullary thyroid cancers. Cancer Res 51: 1596–1599, 1991

    Google Scholar 

  55. Tanaka T, Slamon DJ, Shimoda H, Waki C, Kawaguchi Y, Tanaka Y, Ida N: Expression of Ha-ras oncogene products in human neuroblastomas and the significant correlation with a patient's prognosis. Cancer Res 48: 1030–1034, 1988

    Google Scholar 

  56. Matsunaga T, Takahashi H, Ohnuma N, Tanabe M, Yoshida H, Iwai J, Shirasawa H, Simizu B: Expression of N-myc and c-src protooncogenes correlating to the undifferentiated phenotype and prognosis of primary neuroblastomas. Cancer Res 51: 3148–3152, 1991

    Google Scholar 

  57. Brodeur GM, Seeger RC, Barrett A, Berthold F, Castleberry RP, D'Angio G, De Bernardi B, Evans AE, Pavrot M, Freeman AI, Haase G, Hartmann O, Hayes FA, Helson L, Kemshead J, Lampert F, Ninane J, Ohkawa H, Philip T, Pinkerton CR, Pritchard J, Sawada T, Siegel S, Smith EI, Tsuchida Y, Voute PA: International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol 6: 1874–1881, 1988

    Google Scholar 

  58. Carney JA, Sizemore GW, Tyre GM: Adrenal medullary disease in multiple endocrine neoplasia type 2: Pheochromocytoma and its precursor. Am J Clin Pathol 66: 279–290, 1976

    Google Scholar 

  59. Bravo EL, Gifford RW: Pheochromocytoma: Diagnosis, localization and management. New Engl J Med 311: 1298–1303, 1984

    Google Scholar 

  60. Mathew CGP, Chin KS, Easton DF, Thorpe K, Carter C, Liou GI, Fong S-L, Bridges CDB, Haak H, Nieuwenhuijzen Kruseman AC, Shifter S, Hansen HH, Telenius H, Telenius-Berg M, Ponder BAJ: A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10. Nature 328: 527–528, 1987

    Google Scholar 

  61. Simpson NE, Kidd KK, Goodfellow PJ, McDermid H, Myers S, Kidd JR, Jackson CE, Duncan AMV, Farrer LA, Brasch K, Castiglione C, Genel M, Gertner J, Greenberg CR, Gusella JF, Holden JJA, White BN: Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 328: 528–530, 1987

    Google Scholar 

  62. Jackson C, Nourm R, O'Neal L, Nikolia T, Delaney J: Linkage between MEN-IIb and chromosome 10 markers linked to MEN-IIa. Am J Hum Genet 43: A147, 1988

  63. Seizinger RB, Rouleau GA, Ozelius LJ, Lane AH, Faryniarz AG, Chao MV, Huson S, Korf BR, Parry DM, Pericak-Vance MA, Collins FS, Jobbs WJ, Falcone BG, Iannazzi JA, Roy JC, St. George-Hyslop PH, Tanzi RE, Bothwell MA, Upadhyaya M, Harper P, Goldstein AE, Hoover DL, Bader JL, Spence MA, Mulvihill JJ, Aylsworth AS, Vance JM, Rossenwasser GOD, Gaskell PC, Roses AD, Martuza RL, Breakefield XO, Gusella JF: Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell 49: 589–594, 1987

    Google Scholar 

  64. Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JWM, Collins D, Majoor-Krakauer D, Bonner T, Mathew C, Rubenstein A, Halperin J, McConkie-Rosell A, Green JS, Trofatter JA, Ponder BA, Eierman L, Bowmer MI RS, Oostra B, Aronin N, Smith DI, Drabkin H, Waziri MH, Hobbs WJ, Martuza RL, Conneally PM, Hsia YE, Gusella JF: Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332: 268–269, 1988

    Google Scholar 

  65. Helman LJ, Colten PS, Averbuch SD, Cooper MJ, Keiser HR, Israel MA: Neuropeptide Y expression distinguishes malignant from benign pheochromocytoma. J Clin Oncol 7: 1720–1725, 1989

    Google Scholar 

  66. Grouzmann E, Gicquel C, Plouin PF, Schlumberger M, Comoy E, Bohuon C: Neuropeptide Y and neuron-specific enolase levels in benign and malignant pheochromocytomas. Cancer 66: 1833–1835, 1990

    Google Scholar 

  67. Kiechle-Schwartz M, Neumann HPH, Decker H-JJ, Dietrich C, Wullich B, Schempp W: Cytogenetic studies on three pheochromocytomas derived from patients with von Hippel-Lindau syndrome. Hum Genet 82: 127–130, 1989

    Google Scholar 

  68. Szucs S, Herzog R, Dralle H, Kovacs G, Blin N: Chromosome 22 deletion in pheochromocytoma. Cancer Genet Cytogenet 38: 189, 1989

    Google Scholar 

  69. Nelkin BD, Nakamura Y, White RW, deBustros AC, Herman J, Wells SAJ, Baylin SB: Low incidence of loss of chromosome 10 in sporadic and hereditary human medullary thyroid carcinoma. Cancer Res 49: 4114–4119, 1989

    Google Scholar 

  70. Landsvater RM, P. MCG, Smith BA, Marcus EM, Te Meerman GJ, Lips CJM, Geerdink RA, Nakamura Y, Ponder BAJ: Development of multiple endocrine neoplasia type IIa does not involve substantial deletions of chromosome 10. Genomics 4: 246–250, 1989

    Google Scholar 

  71. Okazaki M, Miya A, Tanaka N, Miki T, Yamamoto M, Motomura K, Miyauchi A, Mori T, Takai S-I: Allele loss on chromosome 10 and point mutation ofras oncogenes are infrequent in tumors of MEN 2A. Henry Ford Hosp Med J 37: 112–115, 1989

    Google Scholar 

  72. Mathew CGP, Smith BA, Thorpe K, Wong Z, Royle NJ, Jeffries AJ, Ponder BAJ: Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 328: 524–526, 1987

    Google Scholar 

  73. Takai S-i, Tateishi H, Nishisho I, Miki T, Motomura K, Miyauchi A, Kato M, Ikeuchi T, Yamamoto K, Okazaki M, Yamamoto M, Honjo T, Kumahara Y, Mori T: Loss of genes on chromosome 22 in medullary thyroid carcinoma and pheochromocytoma. Jpn J Cancer Res (Gann) 78: 894–898, 1987

    Google Scholar 

  74. Tsutsumi M, Yokota J, Kakizoe T, Koiso K, Sugimura T, Terada M: Loss of heterozygosity on chromosomes 1p and 11p in sporadic pheochromocytoma. J Natl Cancer Inst 81: 367–370, 1989

    Google Scholar 

  75. Yang KP, Nguyen CV, Castillo SG, Samaan NA: Deletion mapping on the distal third region of chromosome 1p in multiple endocrine neoplasia type IIA. Anti Oncogene Res 10: 527–534, 1990

    Google Scholar 

  76. Moley JF, Brother MB, Wells SA, Brodeur GM: Prevalence of chromosome 1p deletions andras gene activation in neuroblastomas, pheochromocytomas and medullary thyroid cancers. Surg Forum 41: 466–468, 1990

    Google Scholar 

  77. Khosla S, Patel VM, Hay ID, Schaid DJ, Grant CS, vanHeerden JA, Thibodeau SN: Loss of heterozygosity suggests multiple genetic alterations in pheochromocytomas and medullary thyroid carcinomas. J Clin Invest 87: 1691–1699, 1991

    Google Scholar 

  78. Boultwood J, Wyllie FS, Williams ED, Wynford-Thomas D: MYCN expression in neoplasia of human thyroid C-cells. Cancer Res 48: 4073–4077, 1988

    Google Scholar 

  79. Goto K, Ogo A, Yanase T, Haji M, Ohashi M, Nawata H: Expression of c-fos and c-myc proto-oncogenes in human adrenal pheochromocytomas. J Clin Endocrinol Metab 70: 353–357, 1990

    Google Scholar 

  80. Zapf J, Schmid C, Froesch ER: Biological and immunological properties of insulin-like growth factors (IGF) I and II. Clinics Endocrin Metab 13: 3–30, 1984

    Google Scholar 

  81. Rechler MM, Nissley SP: The nature and regulation of the receptor for insulin-like growth factors. Ann Rev Physiol 47: 425–442, 1985

    Google Scholar 

  82. Brice AL, Cheetham JE, Bolton VN, W HNC, Schofield PN: Temporal changes in the expression of the insulin-like growth factor II gene associated with tissue maturation in the human fetus. Development 106: 543–554, 1989

    Google Scholar 

  83. Haselbacher GK, Irminger J-C, Zapf J, Ziegler WH, Humbel RE: Insulin-like growth factor II in human adrenal pheochromocytomas and Wilms tumors: Expression at the mRNA and protein level. Proc Natl Acad Sci USA 84: 1104–1106, 1987

    Google Scholar 

  84. El-Badry OM, Romanus JA, Helman LJ, Cooper MJ, Rechler MM, Israel MA: Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J Clin Invest 84: 829–839, 1989

    Google Scholar 

  85. El-Badry OM, Helman LJ, Chatten J, Steinberg SM, Evans AE, Israel MA: Insulin-like growth factor II-mediated proliferation of human neuroblastoma. J Clin Invest 87: 648–657, 1991

    Google Scholar 

  86. Lagervist B, Ivemark B, Sylven B: Malignant neuroepithelioma in childhood. Acta Chir Scand 135: 641–645, 1969

    Google Scholar 

  87. Askin FB, Rosai J, Sbley RK, Dehner LP, McAlister WH: Malignant, small cell tumor of the thoracopulmonary region in childhood. Cancer 43: 2438–2451, 1979

    Google Scholar 

  88. Voss BL, Pysher TJ, Humphrey GB: Peripheral neuroepithelioma in childhood. Cancer 54: 3059–3064, 1984

    Google Scholar 

  89. Miser JS, Kinsella TJ, Triche TJ, Steis R, Tsokos M, Wesley R, Horvath K, Belasco J, Longo DL, Glatstein E, Israel MA: Treatment of peripheral neuroepithelioma in children and young adults. J Clin Oncol 5: 1752–1758, 1987

    Google Scholar 

  90. Thiele CJ, McKeon C, Triche TJ, Ross RA, Reynolds CP, Israel MA: Differential protooncogene expression characterizes histopathologically indistinguishable tumors of the peripheral nervous system. J Clin Invest 80: 804–811, 1987

    Google Scholar 

  91. Brodeur GM: Neuroblastoma and other peripheral neuroectodermal tumors. In: Fernbach DJ, Vietti TJ (eds) Clinical Pediatric Oncology (4th Ed). Mosby Year Book, St. Louis, 1991, pp 437–464.

    Google Scholar 

  92. Whang-Peng J, Triche TJ, Knutsen T, Miser J, Douglass EC, Israel MA: Chromosome translocation in peripheral neuroepithelioma. New Engl J Med 311: 584–585, 1984

    Google Scholar 

  93. Whang-Peng J, Triche TJ, Knutsen T, Miser J, Kao-Shan S, Tsai S, Israel M: Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet 21: 185–208, 1986

    Google Scholar 

  94. McKeon C, Thiele CJ, Ross RA, Kwan M, Triche TJ, Miser JS, Israel MA: Indistinguishable patterns of protooncogene expression in two distinct but closely related tumors: Ewing's sarcoma and neuroepithelioma. Cancer Res 48: 4307–4311, 1988

    Google Scholar 

  95. de Taisne C, Gregonne A, Stehelin D, Bernheim A, Berger R: Chromosomal localization of the human proto-oncogene c-ets. Nature 310: 581–583, 1984

    Google Scholar 

  96. Bechet J-M, Bornkamm G, Lenoir GM: The c-sis oncogene is not activated in Ewing's sarcoma. New Engl J Med 310: 393, 1984

    Google Scholar 

  97. Emanuel BS, Nowell PC, McKeon C, Croce CM, Israel MA: Translocation breakpoint mapping: Molecular and cytogenetic studies of chromosome 22. Cancer Genet Cytogenet 19: 81–92, 1985

    Google Scholar 

  98. Thiele CJ, Whang-Peng J, Kao-Shan CS, Miser J, Israel MA: Translocation of c-sis proto-oncogene in peripheral neuroepithelioma. Cancer Genet Cytogenet 24: 119–128, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodeur, G.M., Moley, J.F. Biology of tumors of the peripheral nervous system. Cancer Metast Rev 10, 321–333 (1991). https://doi.org/10.1007/BF00554794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554794

Key words

Navigation