Skip to main content
Log in

Ab initio effective core potential studies on polymers

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Ab initio crystal orbital calculation with the effective core potential (ECP) approximation is performed on infinite poly-yne, all-trans-polyethylene, and all-trans-polysilane. The optimized bond lengths of poly-yne are predicted to be 1.130 Å and 1.321 Å with the split valence LP-31G basis set and agree fairly well with 4-31G results, 1.166 Å and 1.339 Å.

The energy band structures of poly-yne and all-trans-polyethylene obtained from ECP calculations are in reasonable agreement with those from the all electron calculations. The fully optimized geometries of all-trans-polysilane are also predicted with the LP-31G basis set asr SiSi = 2.264 Å,r SiH = 1.493 Å,\(\sphericalangle\)SiSiSi = 118.97 °, and\(\sphericalangle\)HSiH = 100.35 °. The computational time for calculations of polysilane is found roughly to be comparative to that of polyethylene under ECP approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Del Re, G., Ladik, J., Biczo, G.: Phys. Rev.155, 997 (1967)

    Google Scholar 

  2. Andre, J. M.: J. Chem. Phys.50, 1536 (1969).

    Google Scholar 

  3. Bibliography ofab initio crystal orbital calculations was collected in: Kertesz, M., Koller, J., Azman, A.: Lecture Notes in Physics113, p. 56. Berlin-Heidelberg-New York: Springer 1980

    Google Scholar 

  4. Veillard, A.: Quantum theory in polymers, p. 23, Andre, J. M., Delhalle, J., Ladik, J. (eds). Dordrecht: Reidel 1978

    Google Scholar 

  5. Kahn, L. R., Baybutt, P., Truhler, D. G.: J. Chem. Phys.65, 3826 (1976); Melius, C. F., Goddard III, W. A., Kahn, L. R.: J. Chem. Phys.56, 3342 (1972); Melius, C. F., Goddard III, W. A.: Phys. Rev.A10, 1528 (1974)

    Google Scholar 

  6. Obara, S., Kitaura, K., Morokuma, K.: Theoret. Chim. Acta (Berl.)60, 227 (1981)

    Google Scholar 

  7. Andre, J. M., Bredas, J. L., Delhalle, J.: Int. J. Quantum Chem.19, 1105 (1981)

    Google Scholar 

  8. Nicolas, G., Durand, Ph., Burke, L. A.: Lecture Notes in Physics113, 201 (1980); Bredas, J. L., Chance, R. R., Silbey, R., Nicolas, G., Durand, Ph.: J. Chem. Phys.75, 255 (1982)

    Google Scholar 

  9. For example, see Whangbo, W. H., Hoffmann, R.: J. Am. Chem. Soc.100, 6093 (1978)

    Google Scholar 

  10. Kertesz, M., Koller, J., Azman, A.: J. Chem. Phys.68, 2779 (1978); Karpfen, A.: J. Phys.,C12, 3227 (1979)

    Google Scholar 

  11. Dewar, M. J. S., Yamaguchi, Y., Such, S. H.: Chem. Phys.43, 145 (1979), and references cited therein

    Google Scholar 

  12. Karpfen, A.: J. Chem. Phys.75, 238 (1981) and references cited therein

    Google Scholar 

  13. Reimer, J. A., Vaughan, R. W., Knights, J. C.: Phys. Rev. Letters44, 193 (1980)

    Google Scholar 

  14. We used the crystal orbital program coded by Suhai, S., Suhai, S.: J. Chem. Phys.73, 3843 (1980)

    Google Scholar 

  15. Roothaan, C. C. J.: Rev. Mod. Phys.23, 69 (1951)

    Google Scholar 

  16. Topiol, S., Moskowitz, J. W., Melius, C. F.: J. Chem. Phys.70, 3008 (1979)

    Google Scholar 

  17. Topiol, S., Osman, R.: J. Chem. Phys.73, 5191 (1980)

    Google Scholar 

  18. LP-31G basis sets are taken from GAUSSIAN 80 program. Binkley, J. S., Whiteside, R. A., Krishnan, R., Seeger, R., DeFrees, D. J., Schlegel, H. B., Topiol, S., Kahn, L. R., Pople, J. A.: Quantum Chemistry Program Exchange, Indiana University

  19. Moskowitz, J. W., Topiol, S., Snyder, L. C., Ratner, M. A.: Int. J. Quantum Chem.19, 131 (1981)

    Google Scholar 

  20. Karpfen, A., Petkov, J.: Theoret. Chim. Acta (Berl.)53, 65 (1979); Lowdin, P. O.: Adv. Quantum Chem5, 185 (1970)

    Google Scholar 

  21. Hehre, W. J., Lathan, W. A., Ditchfield, R., Newton, M. D., Pople, J. A.: Quantum Chemistry Program Exchange, Indiana University

  22. Armstrong, D. R., Jamieson, J., Perkins, P. G.: Theoret. Chim. Acta (Berl.)50, 193 (1978)

    Google Scholar 

  23. Koopmans, T.: Physica (The Hague)1, 104 (1933)

    Google Scholar 

  24. Huzinaga, S.: Approximate atomic function I. Alberta: University of Alberta 1971

    Google Scholar 

  25. Mulliken, R. S.: J. Chem. Phys.23, 1841 (1955)

    Google Scholar 

  26. Bock, H., Ensslin, W., Feher, F., Freund, R.: J. Am. Chem. Soc.98, 668 (1976)

    Google Scholar 

  27. Collins, T. C. in: Electronic structure of polymers and molecular crystals, p. 405, Andre, J. M., Ladik, J. (eds.). New York: Plenum, 1975

    Google Scholar 

  28. Pritchard, H. O., Skinner, H. A.: Chem. Rev.55, 745 (1955)

    Google Scholar 

  29. For example, see Kollman, P., McKelvey, J., Johansson, A., Rothenberg, S.: J. Am. Chem. Soc.97, 955 (1975).

    Google Scholar 

  30. Delhalle, J., Andre, J. M., Delhalle, S., Pireaux, J. J., Caudano, R., Verbist, J. J.: J. Chem. Phys.60, 595 (1974)

    Google Scholar 

  31. Karpfen. A.: Int. J. Quantum Chem.19, 1207 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teramae, H., Yamabe, T. & Imamura, A. Ab initio effective core potential studies on polymers. Theoret. Chim. Acta 64, 1–12 (1983). https://doi.org/10.1007/BF00554147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554147

Key words

Navigation