Skip to main content
Log in

Intraspecific genetic variability in mitochondrial DNA of the screwworm fly (Cochliomyia hominivorax)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Mitochondrial DNA variability has been analyzed in the primary screwworm fly (Cochliomyia hominivorax) using restriction endonuclease fragment patterns and restriction site mapping. A total of 30 different screwworm lines originating from Texas to Costa Rica and the Island of Jamaica was examined using 15 restriction endonucleases. Eleven of the restriction enzymes revealed polymorphism and yielded 16 mitochondrial genotypes or haplotypes. Two of the haplotypes were widely distributed, haplotype 1 being found scattered across southern Mexico and haplotype 2 along the west coast of Mexico. Haplotype 1 also appeared paired with several other haplotypes in mixed lines that were most likely the result of collecting an egg mass to which more than one female had contributed or to some form of contamination by haplotype 1 after introduction into the laboratory. These lines became fixed before single insects were examined and thus it is impossible to rule out heteroplasmy. The other 14 haplotypes were found in only a single locale and 12 of these were found in only one line. The average sequence diversity among 27 mainland lines was about 0.5%. The two Jamaican lines and one east coast mainland line differed from the others by >2%. The pattern of geographical distribution, a small number of apparently recurring haplotypes and a substantial number (75%) of the haplotypes unique, bears similarities to patterns observed in other insects such asDrosophila. The high frequency of unique genotypes in southern Mexico suggests a population with a very reduced gene flow, which may have had a positive effect on the sterile male release control program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise, J. C. (1986). Mitochondrial DNA and the evolutionary genetics of higher animals.Phil. Trans. R. Soc. London B 312325.

    Google Scholar 

  • Avise, J. C., and Lansman, R. A. (1983). Polymorphism of mitochondrial DNA in populations of higher animals. In Nei, M., and Koehn, R. K. (ed.),Evolution of Genes and Proteins Sinauer Associates, Sunderland, Mass., pp. 147–164.

    Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C., and Saunders, N. C. (1987). Intraspecific phylogeny: the mitochondrial DNA bridge between population genetics and systematics.Annu. Rev. Ecol. Syst. 18489.

    Google Scholar 

  • Boursot, P., Yonekawa, H., and Bonhomme, F. (1987). Heteroplasmy in mice with deletion of a large coding region of mitochondrial DNA.Mol. Biol. Evol. 446.

    PubMed  Google Scholar 

  • Britten, R. J. (1986). Rates of DNA sequence evolution differ between taxonomic groups.Science 2311393.

    PubMed  Google Scholar 

  • Brown, W. M. (1983). Evolution of animal mitochondrial DNA. In Nei, M., and Koehn, R. K. (ed.),Evolution of Genes and Proteins Sinauer Associates, Sunderland, Mass., pp. 62–88.

    Google Scholar 

  • Brown, W. M. (1985). The mitochondrial genome of animals. In MacIntyre, R. J. (ed.),Molecular Evolutionary Genetics Plenum, New York, London.

    Google Scholar 

  • Coen, E. S., Thoday, J. N., and Dover, G. (1982). Rate of turnover of structural variants in the rDNA gene family ofDrosophila melanogaster.Nature 295564.

    PubMed  Google Scholar 

  • DeSalle, R., Giddings, L. V., and Templeton, A. R. (1986). Mitochondrial DNA variability in natural populations of HawaiianDrosophila. I. Methods and levels of variability inD. silvestris andD. heteroneura populations.Heredity 5675.

    PubMed  Google Scholar 

  • Dev, V., LaChance, L. E., and Whitten, C. J. (1986). Polytene chromosomes, karyotype correlations, and population cytology of the primary screwworm fly.J. Hered. 77427.

    Google Scholar 

  • Hale, L. R., and Singh, R. S. (1986). Extensive size variation and heteroplasmy in mitochondrial DNA among geographic populations ofD. melanogaster.Proc. Natl. Acad. Sci. USA 838813.

    Google Scholar 

  • Harrison, R. G., Rand, D. M., and Wheeler, W. C. (1985). Mitochondrial DNA variation within individual crickets.Science 2281446.

    Google Scholar 

  • Kessler, L. G., and Avise, J. C. (1985). Microgeographic lineage analysis by mitochondrial genotype: Variation in the cotton rat (Sigmodon hispidis).Evolution 39831.

    Google Scholar 

  • Knipling, E. R. (1960). The eradication of the screwworm fly.Sci. Am. 20354.

    PubMed  Google Scholar 

  • LaChance, L. E., and Whitten, C. J. (1986). Cytogenetic studies of screwworm (Diptera: Calliphoridae) populations from southern Mexico and Jamaica.Ann. Entomol. Soc. Am. 79792.

    Google Scholar 

  • Laipis, P. J., Van de Walle, M. J., and Hauswirth, W. W. (1988). Unequal partitioning of bovine mitochondrial genotypes among siblings.Proc. Natl. Acad. Sci. USA 858107.

    PubMed  Google Scholar 

  • Lansman, R. A., Avise, J. C., and Huettel, M. D. (1983). Critical experimental test of the possibility of “paternal leakage” of mitochondrial DNA.Proc. Natl. Acad. Sci. USA 801969.

    PubMed  Google Scholar 

  • Latorre, A., Moya, A., and Ayala, F. J. (1986). Evolution of mitochondrial DNA inDrosophila subobscura.Proc. Natl. Acad. Sci. USA 838649.

    Google Scholar 

  • Moritz, C., Dowling, T. E., and Brown, W. M. (1987). Evolution of animal mitochondrial DNA: Relevance for population biology and systematics.Annu. Rev. Ecol. Syst. 18269.

    Google Scholar 

  • Pomonis, J. G. (1989). Cuticular hydrocarbons of the screwworm,Cochliomyia hominivorax (Diptera: Calliphoridae). Isolation, identification and quantification as a function of age, sex, and irradiation.J. Chem. Ecol. 152301.

    Google Scholar 

  • Powell, J. R., Caccone, A., Amato, G. D., and Yoon, C. (1986). Rates of nucleotide substitution inDrosophila mitochondrial DNA and nuclear DNA are similar.Proc. Natl. Acad. Sci. USA 839090.

    PubMed  Google Scholar 

  • Roehrdanz, R. L., and Johnson, D. A. (1988). Mitochondrial DNA variation among geographical populations of the screwworm fly,Cochliomyia hominivorax.J. Med. Entomol. 25136.

    PubMed  Google Scholar 

  • Satta, Y., Toyohara, N., Ohtaka, C., Tatsuno, Y., Watanabe, T. K., Matsuura, E. T., Chigusa, S. I., and Takahata, N. (1988). Dubious maternal inheritance of mitochondrial DNA inD. simulans and evolution ofD. mauritiana.Genet. Res. Cambr. 521.

    Google Scholar 

  • Slatkin, M. (1985). Rare alleles as indicators of gene flow.Evolution 3953.

    Google Scholar 

  • Solignac, M., Monnerot, M., and Mounolou, J. C. (1983). Mitochondrial DNA heteroplasmy inDrosophila mauritiana.Proc. Natl. Acad. Sci. USA 806942.

    PubMed  Google Scholar 

  • Spolsky, C., and Uzzell, T. (1984). Natural interspecies transfer of mitochondrial DNA in amphibians.Proc. Natl. Acad. Sci. USA 815802.

    PubMed  Google Scholar 

  • Thomas, D. B., and Mangan, R. L. (1989). Oviposition and wound visiting behavior of the screwworm fly,Cochliomyia hominivorax (Coquerel).Ann. Entomol. Soc. Am. 82526.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roehrdanz, R.L. Intraspecific genetic variability in mitochondrial DNA of the screwworm fly (Cochliomyia hominivorax). Biochem Genet 27, 551–569 (1989). https://doi.org/10.1007/BF00553632

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553632

Key words

Navigation