Skip to main content
Log in

The mechanism of crystallographic ordering in CuPt

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present paper is primarily a study of the ordering characteristics within the CuPt system, near the CuPt composition, using X-ray diffraction, optical microscopy (in conjunction with polarized light), high-voltage electron microscopy and dilatometry.

In platinum-rich off-stoichiometric alloys, a wide two-phase region consisting of ordered + disordered platelets was established and the phase boundaries were accurately located. For isothermally ordered stoichiometric alloys, in general two categories of diffraction sequences were observed, depending on the annealing temperature. For anneals in the range 620°C<T<815°C (=Tc), a series of broad, asymmetric X-ray line profiles were obtained during the early part of the ordering cycle: this represents a “continuous” reaction. However, when samples were annealed a temperatures lower than 620°C, there was unmistakable micrographic evidence of the coexistence of both the ordered and disordered phases: this represents a “discontinuous” reaction. After making allowances for a number of side-effects which had broadened X-ray reflections at high temperatures, a nucleation-and-growth model is proposed for CuPt at all ordering temperatures.

The parallel microscopic studies also exhibited quite contrasting morphologies above and below 620°C: a lamellar structure is the product at high temperatures, whereas a grain-boundary reaction, generating very coarse domains, is observed at lower temperatures. A modified microstructure was observed for samples annealed at T<475°C, when ordered spherulites were seen to grow within the grains. Samples cooled slowly through T c order by a diffusion-controlled shear process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Irani and R. W. Cahn, Nature 226 (1970) 1045.

    Google Scholar 

  2. Idem, Acta Metallurgica 21 (1973) 757.

    Google Scholar 

  3. F. W. Jones and C. Sykes, J. Inst. Metals 59 (1936) 257.

    Google Scholar 

  4. R. S. Irani, Contemporary Physics 13 (1972) 559.

    Google Scholar 

  5. J. L. O'Brien and G. C. Kuczynski, Acta Metallurgica 7 (1959) 803.

    Google Scholar 

  6. M. Greenholz, J. Mater. Sci. 7 (1972) 1285.

    Google Scholar 

  7. H. N. Southworth, Scripta Met. 2 (1968) 551.

    Google Scholar 

  8. Fu-Wenling and E. A. Starke, Jun, “Advances in X-ray Analysis” 15 (New York, Plenum Press, 1971) p. 319.

    Google Scholar 

  9. Idem, Scripta Met. 5 (1971) 741.

    Google Scholar 

  10. J. B. Newkirk, A. H. Geisler, D. L. Martin, and. R. Smoluchowski, Trans. AIME 188 (1950) 1249.

    Google Scholar 

  11. J. M. Penisson, A. Bourret, and P. H. Eurin, Acta Metallurgica 19 (1971) 1195.

    Google Scholar 

  12. M. Hirabayashi and S. Weissman, ibid 10 (1962) 25.

    Google Scholar 

  13. P. N. Syutkin, V. I. Syutkina, O. D. Shashkov, E. S. Yakoyleva, and N. N. Buinov, Third Bolton Landing Conf. (edited by B. H. Kear, C. T. Sims, N. S. Stoloff and J. H. Westbrook) (Claitors, Baton Rouge, 1970) p. 227.

    Google Scholar 

  14. R. Smith and J. S. Bowles, Acta Metallurgica 8 (1960) 405.

    Google Scholar 

  15. B. Chakravarti, E. A. Starke, Jun, and B. G. Lefevre, J. Mater. Sci. 5 (1970) 394.

    Google Scholar 

  16. L. E. Tanner, Acta Metallurgica 20 (1972) 1197.

    Google Scholar 

  17. F. N. Rhines and J. B. Newkirk, Trans. ASM 45 (1953) 1029.

    Google Scholar 

  18. M. J. Marcinkowski and L. Zwell, Acta Metallurgica 11 (1963) 373.

    Google Scholar 

  19. F. W. Noble and W. Fairhurst, J. Mater. Sci. 7 (1972) 781.

    Google Scholar 

  20. H. Okamoto and P. A. Beck, Trans. AIME 2 (1971) 569.

    Google Scholar 

  21. P. R. Swann, W. R. Duff, and R. M. Fisher, Phys. Stat. Sol. 37 (1970) 577.

    Google Scholar 

  22. H. Warlimont, K. Bernecker, and R. Lück, Z. Metallk. 62 (1971) 816.

    Google Scholar 

  23. H. P. Aubauer, Acta Metallurgica 20 (1972) 165; 173.

    Google Scholar 

  24. J. O. Linde, Ann. Physik. 30 (1937) 151.

    Google Scholar 

  25. C. B. Walker, J. Appl. Phys. 23 (1952) 118.

    Google Scholar 

  26. N. T. Corke, S. Amelinckz, and J. van Landuyt Mat. Res. Bull. 4 (1969) 289.

    Google Scholar 

  27. H. G. Paris and B. G. Lefevre, Mat. Res. Bull. 7 (1972) 1109.

    Google Scholar 

  28. G. Fournet, “Phase Stability in Metals and Alloys” (edited by P. S. Rudman, J. Stringer and R. I. Jaffee) (McGraw-Hill, New York, 1967), p. 195.

    Google Scholar 

  29. P. C. Clapp and S. C. Moss, Phys. Rev. 142 (1966) 418; 171, 754, 764.

    Google Scholar 

  30. B. W. Mott, “Micro-Indentation Hardness Testing” (Butterworth, London, 1956).

    Google Scholar 

  31. R. S. Irani and R. W. Cahn, Metallography 4 (1971) 91.

    Google Scholar 

  32. S. Tolansky, “Multiple-Beam Interference Microscopy of Metals” (Academic Press, London, 1970).

    Google Scholar 

  33. A. Schneider and U. Esch, Z. Elektrochem. 50 (1944) 290.

    Google Scholar 

  34. P. Assayag and M. Dodé, Compt. Rend. 239 (1954) 762.

    Google Scholar 

  35. H. Warlimont, J. Sheffield Met. Soc. 7 (1968) 45.

    Google Scholar 

  36. R. S. Irani, Fu-Wen Ling, and R. W. Cahn, to be published.

  37. L. E. Tanner and M. F. Ashby, Phys. Stat. Sol. 33 (1969) 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irani, R.S., Cahn, R.W. The mechanism of crystallographic ordering in CuPt. J Mater Sci 8, 1453–1472 (1973). https://doi.org/10.1007/BF00551670

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00551670

Keywords

Navigation