Skip to main content
Log in

The structure of the unidirectionally solidified Al-Al2Au eutectic

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structure of a number of unidirectionally solidified Al-Al2Au alloys of eutectic and off-eutectic compositions has been investigated over a wide range of growth rates (1.6×10−4 to 1.66×10−2cm sec−1) using a thermal gradient of approximately 80 to 100‡ C cm−1. The system exhibits an asymmetric coupled growth zone, which widens at high thermal gradient-growth rate ratios. At high solidification rates a broken lamellar structure is obtained, while at low rates a mixed structure with broken lamellae and rods is present. The crystallographic orientation of the phases as determined on different eutectic grains is as follows:

$$\begin{gathered} lamellar interface \left\| {(001)_{Al_{ 2} Au} } \right.\left\| {(01 1)} \right._{Al} \hfill \\ \left[ {1 1 0} \right]_{Al_{ 2} Au} \left\| {\left[ {1 0 0} \right]} \right._{Al} \hfill \\ growth direction of \hfill \\ lamellae and rods \left\| {\left[ {1 1 0} \right]_{Al_2 Au} \left\| {\left[ {1 0 0} \right]_{Al} } \right.} \right. \hfill \\ \end{gathered} $$

while the preferred growth direction for the Al dendrites as well as for the Al2Au dendrites has been found to be the [100] direction. The interlamellar spacing varies according to the well known relationship

$$\lambda = A \cdot R^{ - n} $$

where R is the growth rate, with n-0.37 for the free-dendrites eutectic structures and n-0.49 for the inter-dendrite eutectic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Chadwick, Spec. Publ. 110 (Iron & Steel Inst., London, 1968) p. 138.

    Google Scholar 

  2. A. Hellawell, ibid, p. 155.

    Google Scholar 

  3. L. M. Hogan, R. W. Kraft and F. D. Lemkey, “Advances in materials Research” Vol. 5 (Wiley, New York, 1971) p. 83.

    Google Scholar 

  4. J. D. Livingston, Mater. Sci. Eng. 7, (1971) 61.

    Google Scholar 

  5. W. Kurz and P.R. Sahn, “Gerichtet erstarrte euteckische Werkstoffe” (Springer, Berlin, 1975).

    Google Scholar 

  6. G. Tammann and A. A. Botschwar, Z. Anorg. Chem. 157 (1926) 26.

    Google Scholar 

  7. A. Kofler, Z. Metallk. 41 (1950) 221.

    Google Scholar 

  8. J. D. Hunt and K. A. Jackson, Trans. Met. Soc. AIME 239 (1967) 864.

    Google Scholar 

  9. H. E. Cline and J. D. Livingston, ibid 245 (1969) 1987.

    Google Scholar 

  10. F. R. Mollard and M. C. Flemings, ibid 239 (1967) 1526.

    Google Scholar 

  11. R. M. Jordan and J. D. Hunt, Met. Trans. 2 (1971) 3401.

    Google Scholar 

  12. H. E. Cline, Trans. Met. Soc. AIME 242 (1968) 1613.

    Google Scholar 

  13. D. T. J. Hurle and E. Jakerman, J. Crystal Growth 3, 4 (1968) 574.

    Google Scholar 

  14. M. H. Burden and J. D. Hunt, ibid 22 (1974) 328.

    Google Scholar 

  15. K. A. Jackson, Trans. Met. Soc. AIME 242 (1968) 1275.

    Google Scholar 

  16. H. A. H. Steen and A. Hellawell, Acta Met. 23 (1975) 529.

    Google Scholar 

  17. D. J. Fisher and W. Kurz, Communication at “Sixth International Light Metals Conference” Leoben — Vienna, Austria, June 1975.

  18. G. Beghi and G. Piatti, Communication at “XIV Convegno Nazionale A.I.M.”, Trieste, Italy (1970).

  19. M. Hansen and K. Anderko, “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958) p. 75.

    Google Scholar 

  20. K. N. Street, C.F. St. John and G. Piatti, J. Inst. Metals 95 (1967) 326.

    Google Scholar 

  21. M. Von Heimendahl, Praktische Metallographie 4 (1967) 65.

    Google Scholar 

  22. W. A. Tiller, “Liquid Metals and Solidification” (ASM, Cleveland, Ohio, 1958).

    Google Scholar 

  23. K. A. Jackson and J. D. Hunt, Trans. Met. Soc. AIME 236 (1966) 1129.

    Google Scholar 

  24. N. Ageew and V. Ageewa, ibid 128 (1938) 259.

    Google Scholar 

  25. J. Forsten and H. M. Miekk-Oja, J. Inst. Metals 99 (1971) 105.

    Google Scholar 

  26. M. Hansen, “Der Aufbau der Zweistofflegierungen” (Springer, Berlin, 1936).

    Google Scholar 

  27. C. T. Heycock and F. H. Neville, Phil. Trans. Roy. Soc. A 194 (1900) 201; 214A (1914) 267; Proc. Roy. Soc. 90 (1914) 560.

    Google Scholar 

  28. H. W. Kerr and W. C. Winegard, Canad. Met. Q. 6 (1967) 55.

    Google Scholar 

  29. R. J. Fidler, M. N. Croker and R. W. Smith, “Crystal Growth” (North Holland, Amsterdam, 1971) p. 739.

    Google Scholar 

  30. M. G. Day and A. Hellawell, Proc. Roy. Soc. A 305 (1968) 473.

    Google Scholar 

  31. H. A. H. Steen and A. Hellawell, Acta Met. 20 (1972) 363.

    Google Scholar 

  32. R. W. Kraft, Trans. Met. Soc. AIME 224 (1962) 65.

    Google Scholar 

  33. Idem, ibid 227 (1963) 393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piatti, G., Pellegrini, G. The structure of the unidirectionally solidified Al-Al2Au eutectic. J Mater Sci 11, 913–924 (1976). https://doi.org/10.1007/BF00542310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00542310

Keywords

Navigation