Skip to main content
Log in

Damping capacity, resistivity, thermal expansion and machinability of aluminium alloy-mica composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Damping capacities of cast aluminium alloy-mica particle composites were measured using a torsional pendulum method at a constant strain amplitude. The damping capacity of aluminium alloys progressively increases with increasing amounts of mica particles dispersed in the matrix, within the range investigated. The percentage increase in damping capacity at any level of mica is several times greater than the volume per cent of mica particles present in the matrix. The ratios of the specific damping capacity to density of aluminium alloy-mica particle composites (above 2% of mica) are greater than that of cast iron. Machinability tests on aluminium alloy-mica composites carried out at different speeds indicated that the average length and weight of individual chips decreases with increasing amounts of mica particles in the matrix. The percentage increase in the number of chips per gram of composite was several times the volume per cent of mica particles present in the composite. A decrease in the size of chips due to mica dispersions is a major asset since it permits faster machining speeds. Measurements of coefficient of thermal expansion showed very marginal increases in the aluminium alloys as a result of 2% mica dispersions. The electrical resistivity measurements of aluminium-mica composites using Kelvin's double bridge showed increases in electrical resistance of the order of 14% as a result of 2.2% mica additions. The measured increases in the electrical resistivity and coefficients of expansion are higher than the values calculated from the presently established theories of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Badia and P. K. Rohatgi, AFS Trans. 2 (1969) 902.

    Google Scholar 

  2. Idem, SAE Trans. 76 (1969) 1200.

    Google Scholar 

  3. V. G. Gorbundy, V. D. Parshin and V. V. Panin, Russ. Cast. Prod. August (1974) 348.

  4. B. C. Pai, P. K. Rohatgi and S. Venkatesh, Wear 30 (1974) 117.

    Google Scholar 

  5. B. C. Pai and P. K. Rohatgi, Trans. Indian Inst. Met. 27 (1974) 97.

    Google Scholar 

  6. P. K. Rohatgi and B. C. Pai, Int. J. Lubric. Tech. 101 (1979) 376.

    Google Scholar 

  7. A. M. Patton, J. Inst. Met. (C) (1972) 197.

  8. M. K. Surappa and P. K. Rohatgi, Met. Tech. 5 (1978) 358.

    Google Scholar 

  9. M. Suwa, K. Momuro and K. Soono, Nippon Kinzoku, Grakkaishi 41 (1977) 511.

    Google Scholar 

  10. B. C. Pai and P. K. Rohatgi, J. Mater. Sci. 13 (1978) 329.

    Google Scholar 

  11. S. Ray, B. C. Pai, K. V. Prabhakar and P. K. Rohatgi, Mater. Sci. Eng. 24 (1976) 31.

    Google Scholar 

  12. B. P. Krishnan, P. K. Rohatgi and H. R. Shetty, Trans. Amer. Foundrymens Soc. 76–86 (1976) 73.

    Google Scholar 

  13. B. P. Krishnan, S. Raman and P. K. Rohatgi, Proceedings of the International Wear Conference, Michigan, USA, 1979, p. 160.

  14. P. K. Rohatgi, B. C. Pai and P. C. Panda, J. Mater. Sci. 14 (1979) 2277.

    Google Scholar 

  15. Deonath, R. T. Bhat and P. K. Rohatgi, J. Mater. Sci. 15 (1980) 1241.

    Google Scholar 

  16. Deonath, S. K. Biswas and P. K. Rohatgi, Wear 60 (1980) 61.

    Google Scholar 

  17. P. K. Rohatgi, N. Murali, H. R. Shetty and R. Chandrasekhar, Mater. Sci. Eng. 26 (1976) 115.

    Google Scholar 

  18. J. G. Kaufman, Mater. Des. Eng. (1962) 104.

  19. M. A. O. Fox and R. D. Adams, J. Mech. Eng. Sci. 15 (1973) 81.

    Google Scholar 

  20. R. D. Adams and M. A. O. Fox, J. Iron Steel Inst. 211 (1977) 37.

    Google Scholar 

  21. E. P. Bowden and D. Tabor, “Friction and Lubrication Solids”, (Clarendon Press, Oxford, 1974) p. 199.

    Google Scholar 

  22. V. K. Agrawal, Hindustan Aluminium Corporation, Renukoot, UP, India, private communication, July 1980.

  23. P. S. Turner, J. Res. Natl. Bur. Std. 37 (1946) 239.

    Google Scholar 

  24. J. P. Thomas, “Effect of Inorganic Fillers on the Coefficient of Thermal Expansion of Polymeric Materials”, General Dynamics/Fort Worth, Texas, AD 287-826. (As noted from J. Composite Mater. 1 (1967) 119.)

    Google Scholar 

  25. Charless L. Mantell, “Engineering Materials Handbook”, (McGraw-Hill Book Co., New York, 1958) p. 35.

    Google Scholar 

  26. J. C. Maxwell, A Treatise on Electricity and Magnetism”, Vol. 1, 3rd edn, (Clarendon Press, Oxford, 1892) p. 440.

    Google Scholar 

  27. L. H. Van Vlack, “Materials Science for Engineers”, (Addison-Wesley Publishing Company, London, 1973) p. 407.

    Google Scholar 

  28. L. K. H. Van Beek, “Progress in Dielectrics”, Vol. 7 (Heywood, London, 1967) p. 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deonath, Narayan, R. & Rohatgi, P.K. Damping capacity, resistivity, thermal expansion and machinability of aluminium alloy-mica composites. J Mater Sci 16, 3025–3032 (1981). https://doi.org/10.1007/BF00540308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540308

Keywords

Navigation