Skip to main content
Log in

Structural characteristics of a mechanically alloyed Al–Fe powder composite

  • Composite Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The published data on the use of functional composite materials on the basis of Al–Fe intermetallic compounds are presented. Advantages of the solid-phase technology of aluminide production (mechanical alloying + thermal synthesis) when compared to the liquid-phase technology, namely, lower energy consumption and better control over the structure and phase composition of the material, are noted. The distribution of Al and Fe in the powder composite is determined using metallographic methods. It is shown that the use of the fraction of Al powder of 60–80 μm and the fraction of Fe powder of 20–40 μm is reasonable for production of composite materials with a more uniform distribution of the Fe component. It follows from the results of microhardness measurements that significant strain hardening of Al and Fe particles occurs during mechanical alloying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashby, M.F., Materials Selection in Mechanical Design, Burlington, MA: Butterworth, 2005.

    Google Scholar 

  2. Arkatova, L.A., Kharlamova, T.S., Galaktionova, L.V., et al., CO2 reforming of methane over SHS-intermetallides, Sovrem. Naukoemkie Tekhnol., 2005, no. 11, pp. 23–27.

    Google Scholar 

  3. Kurganova, Yu.A., Chernyshova, T.A., Kobeleva, L.I., and Kurganov, S.V, Service properties of aluminummatrix precipitation-hardened composite materials and the prospects of their use on the modern structural material market, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 7, pp. 663–666.

    Article  Google Scholar 

  4. Krajci, M. and Hafner, J, Complex intermetallic compounds as selective hydrogenation catalysts—a case study for the (100) surface of Al13CO4, J. Catal., 2011, vol. 278, no. 2, pp. 200–207.

    Article  CAS  Google Scholar 

  5. O merakh po stimulirovaniyu sokrashcheniya zagryazneniya atmosfernogo vozdukha produktami szhiganiya poputnogo neftyanogo gaza na fakel’nykh ustanovkakh (s izmeneniyami na 8 noyabrya 2012 goda) (The Measures for Improvement of Atmospheric Air Pollution Reduction by the Products of Combustion of Associated Oil Gas in Flares (with Changes on November 8, 2012)), Moscow, 2012, no. 47, pp. 64–99. http://docs.cntd.ru/document/902137658.

  6. Galaktionova, L.V., Arkatova, L.A., Kurina, L.N., et al., Fe-containing intermetallic compounds as catalysts of methane conversion with carbon dioxide, Russ. J. Phys. Chem. A, 2008, vol. 82, no. 2, pp. 206–210.

    CAS  Google Scholar 

  7. Arkatova, L.A, Intermetallic compounds as highly active catalysts of natural gas conversion, Khim. Inter. Ustoichivogo Razvit., 2011, vol. 19, no. 1, pp. 1–15.

    Google Scholar 

  8. Armbrüster, M., Schlöglb, R., and Grin, Y, Intermetallic compounds in heterogeneous catalysis—a quickly developing field, Sci. Technol. Adv. Mater., 2014, vol. 15, no. 3, pp. 1–17.

    Article  Google Scholar 

  9. Armbrüster, M., Kovnir, K., Friedrich, M., et al., Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation, Nat. Mater., 2012, vol. 11, no. 8, pp. 690–693. doi 10.1038/nmat3347

    Article  Google Scholar 

  10. Gille, P. and Bauer, B, Single crystal growth of Al13-CO4 and Al13Fe4 from Al-rich solution by the Czochralski method, Cryst. Res. Technol., 2008, vol. 43, no. 1, pp. 1161–1167.

    Article  CAS  Google Scholar 

  11. Dedov, A.G., Loktev, A.S., Komissarenko, D.A., et al., Partial oxidation of methane to produce syngas over a neodymium-calcium cobaltate-based catalyst, Appl. Catal., A, 2015, vol. 489, pp. 140–146.

    Article  CAS  Google Scholar 

  12. Sirovatka, V.L., Oliker, V.E., and Yakovleva, M.S., Fe–Al intermetallic compounds: production methods, properties, and coatings, Materialovedenie, 2013, no. 3, pp. 46–53.

    Google Scholar 

  13. Melchakov, M.A., Skvortsov, A.I., and Chudakov, I.B, Effect of the heat- and thermomagnetic treatment on the properties of high damping iron-aluminum alloys, Tekhnol. Met., 2011, no. 11, pp. 28–32.

    Google Scholar 

  14. Krasnowski, M. and Kulik, T, Nanocrystalline Al–Fe intermetallics—light weight alloys with high hardness, Intermetallics, 2010, vol. 18, no. 1, pp. 47–50.

    Article  CAS  Google Scholar 

  15. Springer, H., Kostka, A., Payton, E.J., Raabe, D., Kaysser-Pyzalla, A., and Eggeler, G, On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys, Acta Mater., 2011, vol. 59, no. 3, pp. 1586–1600.

    Article  CAS  Google Scholar 

  16. Szczepaniak, A., Fan, J., Kostka, A., and Raabe, D, On the correlation between thermal cycle and formation of intermetallic phases at the interface of laserwelded aluminum-steel overlap joints, Adv. Eng. Mater., 2012, vol. 14, no. 7, pp. 464–472. doi 10.1002/adem.201200075

    Article  CAS  Google Scholar 

  17. Naoi, D. and Kajiharaq, M, Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures, Mater. Sci. Eng. A, 2007, vol. 459, pp. 375–382.

    Article  Google Scholar 

  18. Audo, L., Eyidi, D., Schmaranzer, C.H., Arenholz, E., Jank, N., Bruckner, J., et al., Intermetallic FexAlyphases in a steel/Al-alloy fusion weld, J. Mater. Sci., 2007, vol. 42, no. 12, pp. 4205–4214.

    Article  Google Scholar 

  19. Ma, J., Yang, J., Bi, Q., and Liu, W, Preparation ultrafine grained Fe–40Al intermetallic compound, Acta Metall. Sin., 2010, vol. 23, no. 1, pp. 50–56. http://www.amse.org.cn/fileup/PDF/E2009079.pdf.

    CAS  Google Scholar 

  20. Durjko, T., Lipinski, S., Bojar, Z., and Bytstrycki, J, Processing and characterization of graded metal/intermetallic materials: The example of Fe–FeAl intermetallic, Mater. Des., 2011, vol. 32, no. 5, pp. 2827–2834.

    Article  Google Scholar 

  21. Kovtunov, A.I. and Myamin, S.V, The analysis of liquid- phase processes of formation of layered composite materials of iron-aluminum system, Tsvetn. Met., 2010, no. 7, pp. 65–66.

    Google Scholar 

  22. Kuz’mich, Yu.V., Kolesnikova, I.G., Serba, V.I., and Fredin, B.M., Mekhanicheskoe legirovanie (Mechanical Alloying), Moscow: Nauka, 2005.

    Google Scholar 

  23. Movahedi, M., Kokabi, A.H., Seyed Reihani, S.M., et al., Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds, Mater. Charact., 2014, vol. 90, pp. 121–126.

    Article  CAS  Google Scholar 

  24. Shabashov, V.A., Brodova, I.G., Mukoseev, A.G., Sagaradze, V.V., and Litvinov, A.V, Structural and phase transformations in the Al–Fe system upon severe plastic deformation, Phys. Met. Metallogr., 2005, vol. 100, no. 4, pp. 380–391.

    Google Scholar 

  25. Shabashov V.A., Brodova I.G., Mukoseev A.G., Sagaradze V.V., and Litvinov A.V. Mussbauer study of iron aluminide dissolution under severe cold deformation, Bull. Russ. Acad. Sci.: Phys., 2005, vol. 69, no. 10, pp. 1635–1641.

  26. Artyukh, V.A., Yusupov, V.S., Alymov, V.I., and Zelenskii, V.A, Preparation of Al–Fe and Al–Co intermetallides by solid phase method, Trudy VImezhdunarod. konf. “Deformatsiya i razrushenie materialov i nanomaterialov (DFMN-2015), Moskva, 12–13 noyabrya 2015” (Proc. 6th Int. Conf. “Deformation and Destruction of Materials and Nanomaterials,” Moscow, November 12–13, 2015), Moscow: Inst. Metall. Materialoved., Ross. Akad. Nauk, 2015, pp. 418–419.

    Google Scholar 

  27. Artuykh V.A., Yusupov V.S., Arashanova A.L., Loktev A.S., Dedov A.G., Alymov M.I., and Zelenskii, V.A., Preparation of Al–Fe and Al–Co catalysts by solid phase method, Trudy XIII Rossiisko-Kitaiskogo simpoziuma “Novye materialy i tekhnologii,” Kazan’, 21–25 sentyabrya 2015 (Proc. 13th Russian-Chinese Symp. “Advanced Materials and Technologies,” Kazan, September 21–25, 2015), Solntsev, K.A., Ed., Moscow: Nauka,2015, pp. 724–725.

  28. Panin, A.V., Son, A.A., Ivanov, Yu.F., and Kopylov, V.I, Specific localization and stage character of plastic deformation of submicrocrystalline armco-iron with the fragmented band substructure, Fiz. Mezomekh., 2004, vol. 7, no. 3, pp. 3–16.

    Google Scholar 

  29. Segal, V.M., Reznikov, V.I., Kopylov, V.I., et al., Protsessy strukturoobrazovaniya pri plasticheskoi deformatsii metallov (Structurization under the Plastic Deformation of Metals), Minsk: Nauka i Tekhnika, 1994.

    Google Scholar 

  30. Drits, M.E., Budberg, P.G., Kuznetsov, N.T., et al., Svoistva elementov (Properties of Elements), Moscow: Metallurgiya, 1997.

    Google Scholar 

  31. Lakhtin, Yu.M., Metallovedenie i termoobrabotka metallov (Metal Science and Heat Treatment of Metals), Moscow: Metallurgiya, 1983.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Artyukh.

Additional information

Original Russian Text © V.A. Artyukh, V.S. Yusupov, V.A. Zelensky, M.S. Kholin, R.S. Fakhurtdinov, 2016, published in Fizika i Khimiya Obrabotki Materialov, 2016, No. 3, pp. 39–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artyukh, V.A., Yusupov, V.S., Zelensky, V.A. et al. Structural characteristics of a mechanically alloyed Al–Fe powder composite. Inorg. Mater. Appl. Res. 8, 459–463 (2017). https://doi.org/10.1134/S2075113317030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317030030

Keywords

Navigation