Skip to main content
Log in

Störungen des Kohlenhydratstoffwechsels im Kaliummangel

Disturbances of carbohydrate metabolism in potassium deficiency

  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie Aims and scope Submit manuscript

Summary

Feeding rats a low potassium diet over a period of 2–3 weeks produces a negative potassium balance the mean of which is 1445±125 μeq/animal.

Blood glucose concentration has been found increased under this condition. Following intravenous loading with glucose there is a decrease in the elimination constant k 2 of glucose. Cellular glucose uptake has also been found to be impaired in alloxan diabetic animals fed a low potassium diet. From this it is concluded that there is a reduction in basal glucose transport in potassium deficiency. L-arabinose distribution volume is also decreased, indicating that the impairment in cellular glucose uptake is not caused by a reduction in intracellular utilisation of glucose. Endogenous insulin has been found to accelerate impaired basal glucose transport to a smaller degree than the unimpaired glucose transport in normal rats. Insulin plasma concentration is elevated. The same applies to the pancreatic function to secrete insulin in response to an increase in blood glucose concentration. The increase in insulin secretion is considered to be the consequence of the diminished action of insulin. The same relation holds for experiments in which glucocorticoids were given to rats at a pharmacological dose level: as glucocorticoids diminish basal glucose uptake, insulin secretion increases, apparently to compensate for the impaired peripheral action of endogenous insulin.

The reduction in basal glucose transport as well as its consequences on insulin secretion in potassium deficient rats may partly be caused by an increase in glucocorticoid secretion. This has been concluded from an increase in suprarenal corticosterone concentration. An enhanced rate of corticosterone synthesis and output may be responsible for the increase in hepatic and renal glucose-6-phosphatase activity of potassium depleted rats.

Lowering intracellular pH values has also been found to lead to an increase in hepatic glucose-6-phosphatase activity. Therefore, an intracellular acidosis in liver could contribute to the increase in glucose-6-phosphatase activity measured in the liver of potassium deficient rats. Cellular acidosis has been found to occur in skeletal muscles of potassium deficient animals, and this was explained by hydrogen ions partially replacing the decrease in intracellular potassium concentration (Cooke, Segar, Cheek, Coville, and Darrow, 1952; Irvine, Saunders, Milne, and Crawford, 1960). Cellular sodium and potassium concentration are, however, unaltered in the liver of potassium deficient rats. Thus, there is no indication for a compensatory increase in intracellular hydrogen concentration in this tissue.

In contrast to liver, besides the glucocorticoid induced effect a pH dependent increase in glucose-6-phosphatase activity may contribute to the increase in enzymic hydrolysis of glucose-6-phosphate observed in the kidneys of potassium depleted rats.

In addition to the replacement of cellular potassium by hydrogen ions there is also a compensatory increase in intracellular sodium concentration of skeletal muscles. Sodium ions inhibit glycogen phosphorylase phosphatase thereby reducing the rate of conversion of active glycogen phosphorylase a into the inactive glycogen phosphorylase b. Consequently, the glycogenolytic action of epinephrine is increased in potassium deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Anderson, E.: Adrenocorticotrophin-releasing hormone in peripheral blood: increase during stress. Science 152, 379 (1966).

    Google Scholar 

  • Bassett, J. M., S. C. Mills, and R. L. Reid: The influence of cortisol on glucose utilisation in sheep. Metabolism 15, 922 (1966).

    Google Scholar 

  • Blecher, M.: Serumprotein-steroid hormone interactions. Effects of glucocorticoids on glucose metabolism in rat adipose tissue cells, and the influence of human plasma corticosteroid binding protein. Endocrinology 79, 541 (1966).

    Google Scholar 

  • Conn, J. W.: Hypertension, the potassium ion and impaired carbohydrate tolerance. New Engl. J. Med. 273, 1135 (1965).

    Google Scholar 

  • Cooke, R. E., W. E. Segar, D. B. Cheek, F. E. Coville, and D. C. Darrow: The external correction of alkalosis associated with potassium deficiency. J. clin. Invest. 31, 798 (1952).

    Google Scholar 

  • Fain, J. N.: Effect of puromycin on incubated adipose tissue and its response to dexamethasone, insulin and epinephrine. Biochim. biophys. Acta (Amst.) 84, 636 (1964).

    Google Scholar 

  • Goodman, A. D., R. E. Fuisz, and G. F. Cahill Jr.: Renal gluconeogenesis in acidosis, alkalosis and potassium deficiency: its possible role in regulation of renal ammonia production. J. clin. Invest. 45, 612 (1966).

    Google Scholar 

  • Guillemin, R., G. W. Clayton, H. S. Lipscomb, and J. D. Smith: Fluorometric measurement of rat plasma and adrenal corticosterone concentration. J. Lab. clin. Med. 53, 830 (1959).

    Google Scholar 

  • Harper, A. E.: In H. U. Bergmeyer: Methoden der enzymatischen Analyse, S. 788. Weinheim: Verlag Chemie 1962.

    Google Scholar 

  • Irvine, R. O. H., S. J. Saunders, M. D. Milne, and M. A. Crawford: Gradients of potassium and hydrogen ion in potassium-deficient voluntary muscle. Clin. Sci. 20, 1 (1960).

    Google Scholar 

  • Kaess, H., G. Senft, W. Losert, R. Sitt u. G. Schultz: Mechanismus der gesteigerten glycogenolytischen Wirkung des Diazoxids im Kaliummangel. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 395 (1966).

    Google Scholar 

  • Kattwinkel, J., and A. Munck: Actions in vitro of glucocorticoids and related steroids on glucose uptake by rat thymus cell suspensions. Endocrinology 79, 387 (1966).

    Google Scholar 

  • Logothetopoulos, J., J. K. Davidson, R. E. Haist, and C. H. Best: Degranulation of beta cells and loss of pancreatic insulin after infusions of insulin antibody or glucose. Diabetes 14, 493 (1965).

    Google Scholar 

  • Losert, W., C. Senft u. G. Senft: Extrarenale Wirkungen des Aldosterons und der Spirolactone. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 450 (1964).

    Google Scholar 

  • —— u. H. Kaess: Die Beteiligung des Insulins an der Diazoxid-Hyperglykämie. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 388 (1966).

    Google Scholar 

  • Malaisse, W., F. Malaisse-Lagae, E. F. McCraw, and P. H. Wright: Insulin secretion in vitro by pancreatic tissue from normal, adrenalectomized, and cortisol treated rats. Proc. Soc. exp. Biol. (N.Y.) 124, 924 (1967).

    Google Scholar 

  • Mejbaum, W.: Über die Bestimmung kleiner Pentosemengen, insbesondere in Derivaten der Adenylsäure. Hoppe-Seylers Z. physiol. Chem. 258, 117 (1939).

    Google Scholar 

  • Milner, R. D. G., and C. N. Hales: The sodium pump and insulin secretion. Biochim. biophys. Acta (Amst.) 135, 375 (1967).

    Google Scholar 

  • Morgan, C. R., and A. Lazarow: Immunoassay of insulin uning a two-antibody system. Proc. Soc. exp. Biol. (N.Y.) 111, 29 (1962).

    Google Scholar 

  • —— —— Immunoassay of insulin: two antibody system. Diabetes 12, 115 (1963).

    Google Scholar 

  • ——, and A. Lazarow: Further studies of an inhibitor of the two antibody immunoassay system. Diabetes 13, 579 (1964).

    Google Scholar 

  • Morita, Y., and A. Munck: Effect of glucocorticoids in vivo and in vitro on net glucose uptake and amino acid incorporation by rat thymus cells. Biochim. biophys. Acta (Amst.) 93, 150 (1964).

    Google Scholar 

  • Nagano, M., K. Klütsch, A. Heidland u. H. Hochrein: Enzymaktivitäten in der Niere bei akuter experimenteller Hypokaliämie. Klin. Wschr. 41, 605 (1963a).

    Google Scholar 

  • —— —— —— —— Enzymaktivitäten in der Leber bei akuter experimenteller Hypokaliämie. Z. ges. exp. Med. 137, 181 (1963b).

    Google Scholar 

  • Nordlie, R. C., and D. G. Lyrge: The inhibition by citrate of inorganic pyrophosphate-glucose phosphotransferase and glucose-6-phosphatase. J. biol. Chem. 241, 3136 (1966).

    Google Scholar 

  • Peters, G., R. Guidoux u. L. Grassi: Die diabetogene Wirkung von N-Monomethylacetamid. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 58 (1966).

    Google Scholar 

  • Plager, J. E., and N. Matsui: An in vitro demonstration of anti-insulin action of cortisols on glucose metabolism. Endocrinology 78, 1154 (1966).

    Google Scholar 

  • Randle, P. J.: Monosaccharide transport in muscle and its regulation. In: Membrane Transport and Metabolism, p. 431, ed. by A. Kleinzeller and A. Kotyk. London and New York: Academic Press 1964.

    Google Scholar 

  • Rodbel, M.: The metabolism of isolated fat cells. In: Handbook of Physiology, Section 5: Adipose Tissue, ed. by A. E. Renold and G. F. Cahill jr., Washington: American Physiological Society 1965.

    Google Scholar 

  • Rummel, W., u. H. F. Stupp: Der Einfluß von Kalium und Calcium auf die Salz-, Glucose- und Wasserresorption des isolierten Dünndarms. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 240, 79 (1960).

    Google Scholar 

  • Sagild, U., and V. Andersen: Further studies on glucose metabolism in experimental potassium depletion. Acta med. scand. 175, 681 (1964).

    Google Scholar 

  • —— —— and P. B. Andreasen: Glucose tolerance and insulin responsiveness in experimental potassium depletion. Acta med. scand. 169, 243 (1961).

    Google Scholar 

  • Schultz, G., G. Senft, W. Losert u. R. Sitt: Biochemische Grundlagen der Diazoxid-Hyperglykämie. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 372 (1966).

    Google Scholar 

  • Senft, G.: Beeinflussung hormonaler und enzymatischer Regulationen des Kohlenhydratstoffwechsels bei Anwendung von Benzothiadiazinen. Internist 7, 426 (1966).

    Google Scholar 

  • —— u. H. K. Bartelheimer: Ursachen der Störungen im Kohlenhydratstoffwechsel unter dem Einfluß sulfonamidierter Diuretica. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 369 (1966).

    Google Scholar 

  • —— —— u. H. Kaess: Vergleichende Untersuchungen über den Einfluß von 6-Aminonicotinsäureamid und 2,4-Dinitrophenol auf den Natrium-und Kaliumtransport verschiedener Gewebe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 388 (1966).

    Google Scholar 

  • Sitt, R., W. Losert, G. Schultz, H. Kaess u. G. Senft: Der Einfluß von Insulin auf den Kaliumtransport in der Skeletmuskulatur. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 398 (1966).

    Google Scholar 

  • —— u. H. K. Bartelheimer: Wirkungsverlust des Insulins als Ursache der N-Monomethylacetamid-Hyperglykämie. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 383 (1966).

    Google Scholar 

  • —— —— —— —— Die Auswirkung einer negativen Kaliumbilanz auf hormonale und enzymatische Regulationen des Kohlenhydratstoffwechsels. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 66 (1967).

    Google Scholar 

  • —— —— —— —— Zum Mechanismus der gesteigerten Gluconeogenese nach renalen Kaliumverlusten. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 337 (1967).

    Google Scholar 

  • —— —— —— u. H. Kaess: Der Einfluß von Hydrochlorothiazid auf die blutzuckersteigernde Wirkung des Diazoxids. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 402 (1966).

    Google Scholar 

  • Vernikos-Danellis J., E. Anderson, and L. Trigg: Changes in adrenal corticosterone concentration in rats: method of bio-assay for ACTH. Endocrinology 79, 624 (1966).

    Google Scholar 

  • Weber, G., R. L. Singhal, N. B. Stamm, E. A. Fisher, and M. A. Mentendiek: Regulation of enzymes involved in gluconeogenesis. In: Advances in Enzyme Regulation, vol. 2, p. 1 (1964), ed. by G. Weber. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1964.

    Google Scholar 

  • —— —— and S. K. Srivastava: Action of glucocorticoids as inducer and insulin as suppressor of biosynthesis of hepatic gluconeogenic enzymes. In: Advances in Enzyme Regulation, vol. 3, p. 43 (1965), ed. by G. Weber. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1965.

    Google Scholar 

  • Weinges, K. F.: Persönliche Mitteilung (1967).

  • Zenker, N., and D. E. Bernstein: The estimation of small amounts of corticosterone in plasma. J. biol. Chem. 231, 695 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Ein Teil der Ergebnisse wurde auf der 30. Tagung und der 8. Frühjahrstagung der Deutschen Pharmakologischen Gesellschaft vorgetragen (Sitt, Senft, Losert u. Bartelheimer, 1967 a und b).

Wir danken der Deutschen Forschungsgemeinschaft für die Unterstützung unserer Untersuchungen.

Am 31. Oktober 1967 verstorben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartelheimer, H.K., Losert, W., Senft, G. et al. Störungen des Kohlenhydratstoffwechsels im Kaliummangel. Naunyn-Schmiedebergs Arch. Pharmak. u. Exp. Path. 258, 391–408 (1967). https://doi.org/10.1007/BF00538211

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00538211

Key-Words

Schlüsselwörter

Navigation