Skip to main content
Log in

NZP: A new family of low-thermal expansion materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new structural family of low-expansion materials known as NZP has been recently discovered and has generated great interest for wide-ranging applications such as fast ionic conductors, devices requiring good thermal shock resistance, hosts for nuclear wastes, catalyst supports in automobiles, etc. This family is derived from the prototype composition NaZr2P2O12 in which various ionic substitutions can be made leading to numerous new compositions. The bulk thermal expansion of these materials varies from low negative to low positive values and can be controlled and tailored to suit the needs for specific applications. In general, most of the NZP members demonstrate an anisotropy in their lattice thermal expansions, which is the main cause of the low-thermal expansion behavior of these materials. In CaZr4P6O24 and SrZr4P6O24 an opposite anisotropy has been observed which has led to the development of near-zero expansion crystalline solution composition. On the basis of the coupled rotations of the polyhedral network formed by ZrO6 octahedra and PO4 tetrahedra, a crystal structure model to interpret and explain the thermal expansion behavior has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Hummel, Electronic and Newer Ceramics (Industrial Publications, Chicago, 1958), Chaps. V, VI, VII.

    Google Scholar 

  2. F. A. Hummel, Foote Prints 20:3 (1948).

    Google Scholar 

  3. H. W. Fairbairn, Bull. Geol. Soc. Am. 54:1305 (1943).

    Google Scholar 

  4. J. P. Boilot, J. P. Salanic, G. Desplancher, and D. L. Potier, Mat. Res. Bull. 14:1469 (1979).

    Google Scholar 

  5. J. Alamo and R. Roy. J. Am. Ceram. Soc. 67:C78 (1984).

    Google Scholar 

  6. R. Roy, D. K. Agrawal, J. Alamo, and R. A. Roy, Mat. Res. Bull. 19:471 (1984).

    Google Scholar 

  7. D. K. Agrawal and V. S. Stubican, Mat. Res. Bull. 20:99 (1985).

    Google Scholar 

  8. G. E. Lenain, H. A. McKinstry, S. Y. Limaye, and A. Woodword, Mat. Res. Bull. 19:1451 (1984).

    Google Scholar 

  9. T. Oota and I. Yamai, J Am. Ceram. Soc. 69:1 (1986).

    Google Scholar 

  10. R. Roy, E. R. Vance, and J. Alamo, Mat. Res. Bull. 17:585 (1982).

    Google Scholar 

  11. J. B., Goodenough, H. Y.-P. Hong, and J. A. Kafalas, Mat. Res. Bull. 11:203 (1976).

    Google Scholar 

  12. H. Y.-P. Hong, Mat. Res. Bull. 11:173 (1976).

    Google Scholar 

  13. B. E. Taylor, A. D. English, and T. Berzins, Mat. Res. Bull. 12:171 (1977).

    Google Scholar 

  14. J. Alamo and R. Roy, J. Mat. Sci. 21:444 (1986).

    Google Scholar 

  15. S. Y. Limaye, D. K. Agrawal, R. Roy, and Y. Mehrotra, J. Mat. Sci. 26:93 (1991).

    Google Scholar 

  16. G. E. Lenain, H. A. McKinstry, and D. K. Agrawal, J. Am. Ceram. Soc. 68:C224 (1985).

    Google Scholar 

  17. S. Komarneni, Int. J. High Technol. Ceram. 4:31 (1988).

    Google Scholar 

  18. M. Sljukic, B. Matkovic, B. Prodic, and S. Scavnicar, Croat. Chem. Acta 39:145 (1967).

    Google Scholar 

  19. C. Y. Huang, Cell Parameter, Version 2.5.1 (Materials Research Laboratory, The Pennsylvania State University, University Park, 1988).

    Google Scholar 

  20. T. Ohashi and K. Matsuhiro, 91st Ann. Mtg. Am. Ceram. Soc., April 23–27, 1989 Paper 12-B-89.

  21. D. Taylor, Min. Mag. 48:65 (1984).

    Google Scholar 

  22. H. D. Megaw, Crystal Structures—A Working Approach (W. B. Saunders, Philadelphia, 1973).

    Google Scholar 

  23. R. A. Young, Acta Crystallogr. 15:337 (1962).

    Google Scholar 

  24. G. E. Lenain, H. A. McKinstry, J. Alamo, and D. K. Agrawal, J. Mat. Sci. 22:17 (1987).

    Google Scholar 

  25. L. Hagman and P. Kierkegaard, Acta Chem. Scand. 22:1822 (1968).

    Google Scholar 

  26. R. M. Hazen, C. W. Finger, D. K. Agrawal, H. A. McKinstry, and A. J. Perrotta, J. Mater. Res. 2:329 (1987).

    Google Scholar 

  27. M. Sljukic, M. Matkovic, B. Prodic, and D. Anderson, Zeit. Krist. Bd. 130(S):148 (1969).

    Google Scholar 

  28. C. Y. Huang, D. K. Agrawal, and H. A. McKinstry, Unpublished data.

  29. J. L. Rodrigo, P. Carrasco, and J. Alamo, Mat. Res. Bull. 24:611 (1989).

    Google Scholar 

  30. D. Tran Qui, J. J. Capponi, J. C. Joubert, and R. D. Shannon, J. Solid State Chem. 39:219 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, D.K., Huang, C.Y. & McKinstry, H.A. NZP: A new family of low-thermal expansion materials. Int J Thermophys 12, 697–710 (1991). https://doi.org/10.1007/BF00534225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00534225

Key words

Navigation