Skip to main content
Log in

Low-temperature heat capacity of urea

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The heat capacity of urea was measured with an adiabatic calorimeter in the temperature range 15–310 K. The data were extrapolated to 0 K by a model function to derive some standard thermodynamic functions including the enthalpy increments Δ T0 H, the entropy increments Δ T0 S, and the Giauque function (=Δ TS0 Δ T0 H/T). A simple model for the reproduction of the experimental heat capacities of urea, based on the Debye and Einstein functions, is described. The Debye characteristic temperature determined in this way was compared with those calculated from properties other than the heat capacity. Any positive evidence of a suggested phase transition in urea around 190 K was not observed in the present heat capacity measurements. Possible existence of a phase with a Gibbs energy lower than that realized in the present investigation is discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Swaminathan, B. M. Craven, and R. K. McMullan, Acta Crystallogr. Sect. B 40:300 (1984).

    Google Scholar 

  2. R. A. Ruehrwein and H. M. Huffman, J. Am. Chem. Soc. 68:1759 (1946).

    Google Scholar 

  3. K. Sasaki and T. Yokotake, Tokyo Kogyo Shikensho Hokoku 61 (8):309 (1966).

    Google Scholar 

  4. M. Gambino and J. P. Bros, Thermochim. Acta 127:223 (1988).

    Google Scholar 

  5. P. Ferloni and G. Della Gatta, Abstracts of the 10th IUPAC Conference on Chemical Thermodynamics, Prague, Aug. 29–Sept. 2 (1988), p. H20.

  6. L. Lebioda, S. Hodorowicz, and K. Lewinski, Phys. Status Solidi A 49:K27 (1978).

    Google Scholar 

  7. I. Grabowska and R. Kaliszan, Chem. Abstr. 82:77042r (1975).

    Google Scholar 

  8. T. Matsuo and H. Suga, Thermochim. Acta 88:149 (1985).

    Google Scholar 

  9. A. Yamaguchi, T. Miyazawa, T. Shimanouchi, and S. Mizushima, Spectrochim. Acta 10:170 (1957).

    Google Scholar 

  10. K. Liapis, U. A. Jayasooriya, S. F. A. Kettle, J. Eckert, J. A. Goldstone, and A. D. Taylor., J. Phys. Chem. 89:4560 (1985).

    Google Scholar 

  11. J. Lefebvre, H. Fontaine, and R. Fouretu, J. Raman Spectrosc. 4:173 (1975).

    Google Scholar 

  12. G. Fischer and J. Zarembowitch, C.R. Acad. Sci. (Paris) Ser. B 270:852 (1970).

    Google Scholar 

  13. H. Guth, G. Heger, S. Klein, W. Treutmann, and C. Scheringer, Z. Kristallogr. 153:237 (1980).

    Google Scholar 

  14. H. B. Callen, Thermodynamics (Wiley, New York, 1960), p. 354.

    Google Scholar 

  15. Fr. Lösch, Landolt-Börnstein, II/4, 1961, p. 743.

    Google Scholar 

  16. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge University Press, Cambridge, 1972), pp. 65, 67.

    Google Scholar 

  17. N. Sklar, M. E. Senko, and B. Post, Acta Cryst. 14:716 (1961).

    Google Scholar 

  18. A. Yoshihara and E. R. Bernstein, J. Chem. Phys. 77:5319 (1982).

    Google Scholar 

  19. M. Y. Khilji, W. F. Sherman, and G. R. Wilkinson, J. Mol. Struct. 143:109 (1986).

    Google Scholar 

  20. P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 52:106 (1916).

    Google Scholar 

  21. M. Y. Khilji, W. F. Sherman, and G. R. Wilkinson, Raman Spectrosc., Proc. 8th Int. Conf. (1982), p. 481.

  22. S. D. Hamann and M. Linton, High Temp. High Press. 7:165 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, O., Matsuo, T., Suga, H. et al. Low-temperature heat capacity of urea. Int J Thermophys 14, 149–158 (1993). https://doi.org/10.1007/BF00522668

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00522668

Key words

Navigation