Skip to main content
Log in

Genetic control of two electrophoretic variants of glucosephosphate isomerase in the mouse (Mus musculus)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The autosomal variation and the genetic control of GPI has been determined by a comparison of electrophoretic patterns of F1 and backcross progeny of three inbred strains of mice. The locus controlling the production of GPI in the mouse has been designated Gpi-1. Two alleles at this locus have been described and designated Gpi-1 a and Gpi-1 b, which represent, respectively, the slow and fast electrophoretic forms. Twenty-seven inbred strains of mice have been classified for these two alleles. The absence of close linkage of Gpi-1 to seven other genetic loci has been determined. It has been demonstrated that the polymorphism of Gpi-1 is widely distributed in feral mice. GPI was expressed in vitro and in four types of malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustinsson, K. B., and Disson, B. (1959). Esterases in the milk and blood plasma of swine. 2. Activities at different stages during the lactation and suckling periods, and plasma arylesterases as a gene-controlled enzyme. Biochem. J. 71 484.

    Google Scholar 

  • Bodansky, O. (1953). Serum phosphohexose isomerase. J. Biol. Chem. 202 829.

    Google Scholar 

  • Bodansky, O. (1954a). Serum phosphohexose isomerase in cancer. I. Method of determination and establishment of normal values. Cancer 7 1191.

    Google Scholar 

  • Bodansky, O. (1954b). Serum phosphohexose isomerase in cancer. II. As an index of tumor growth in metastatic carcinoma of the breast. Cancer 7 1200.

    Google Scholar 

  • Bodansky, O. and Schwartz, M. R. (1966). Phosphohexose isomerase: clinical aspects. In Wood, W. A. (ed.), Methods of Enzymology, Vol. 9, Academic Press, New York, p. 568.

    Google Scholar 

  • Carter, N. D., and Parr, C. W. (1967). Isoenzymes of phosphoglucose isomerase in mice. Nature 216 511.

    Google Scholar 

  • Carter, N. D., Fildes, R. A., Fitch, L. I., and Parr, C. W. (1968). Genetically determined electrophoretic variations of human phosphogluconate dehydrogenase. Acta Genet. Basel 18 109.

    Google Scholar 

  • Detter, J. C., Ways, P. O., Giblett, E. R., Baughan, M. A., Hopkinson, D. A., Povey, S., and Harris, H. (1968). Inherited variations in human phosphohexose isomerase. Ann. Human Genet. (London) 31 329.

    Google Scholar 

  • Ehrenstein, G. von (1966). Translation variations in the amino acid sequence of the alpha chain of rabbit hemoglobin. Cold Spring Harbor Symp. Quant. Biol. 31 705.

    Google Scholar 

  • Epstein, C. J., and Schechter, A. N. (1968). An approach to the problem of conformational isozymes. Symposium on isozymes. Proc. N.Y. Acad. Sci. 151 85.

    Google Scholar 

  • Garen, A., and Siddiqi, D. (1962). Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc. Natl. Acad. Sci. 48 1121.

    Google Scholar 

  • Gartler, M. C., and Pious, D. A. (1966). Genetics of mammalian cell cultures. Humangenetik 2 83.

    Google Scholar 

  • Harris, H. (1966). Enzyme polymorphisms in man. Proc. Roy. Soc. London B 164 298.

    Google Scholar 

  • Harris, H., Hopkinson, D. A., Luffman, J. E., and Rapley, S. (1968). Electrophoretic variation in erythrocyte enzymes. In Beutler, E. (ed.), Hereditary Disorders of Erythrocyte Metabolism, City of Hope Symposium Series, Vol. 1, Grune and Stratton, New York, pp. 1–65.

    Google Scholar 

  • Henderson, N. S. (1965). Isozymes of isocitrate dehydrogenase: subunit structure and intracellular location. J. Exptl. Zool. 158 263.

    Google Scholar 

  • Henderson, N. S. (1966). Isozymes and genetic control of NADP-malate dehydrogenase in mice. Arch. Biochem. Biophys. 117 28.

    Google Scholar 

  • Kitto, G. B., Wassarman, P. M., and Kaplan, N. O. (1966). Enzymatically active conformers of mitochondrial malate dehydrogenase. Proc. Natl. Acad. Sci. 56 578.

    Google Scholar 

  • Lohman, K. (1933). Formation and hydrolysis of phosphate esters. Synthesis of natural hexosemonophosphate from its components. Biochem. Z. 262 137.

    Google Scholar 

  • Roe, J. H. (1934). A colorimetric method for the determination of fructose in blood and urine. J. Biol. Chem. 107 15.

    Google Scholar 

  • Roe, J. H., Epstein, J. H., and Goldstein, N. P. (1949). Photometric method for the determination of inulin in plasma and urine. J. Biol. Chem. 178 839.

    Google Scholar 

  • Rose, I. A. (1962). Mechanism of C-H bond cleavage in aldolase and isomerase reactions. Brookhaven Symp. Biol. 15 293.

    Google Scholar 

  • Ruddle, F. H. (1969). Isozymic variants as genetic markers in somatic cell populations in vitro. Natl. Cancer Inst. Monograph 29 9.

    Google Scholar 

  • Ruddle, F. H., and Roderick, T. H. (1965). The genetic control of three kidney esterases in C57BL/6J and Rf/J mice. Genetics 51 445.

    Google Scholar 

  • Ruddle, F. H., and Roderick, T. H. (1966). The genetic control of two types of esterases in inbred strains of the mouse. Genetics 54 191.

    Google Scholar 

  • Ruddle, F. H., and Roderick, T. H. (1968). Second conf. multiple molecular forms of enzymes. Ann. N. Y. Acad. Sci. 151 531.

    Google Scholar 

  • Ruddle, F. H., Shows, T. B., and Roderick, T. H. (1968). Autosomal control of an electrophoretic variant of glucose-6-phosphate dehydrogenase in the mouse (Mus musculus). Genetics 58 599.

    Google Scholar 

  • Ruddle, F. H., Shows, T. B., Chen, T. R., and Silagi, S. (in preparation).

  • Schwartz, D. (1964). A second hybrid enzyme in maize. Proc. Natl. Acad. Sci. 51 602.

    Google Scholar 

  • Schwartz, M. K., and Bodansky, O. (1966). Relationship of the electrophoretic patterns of phosphohexose isomerase and glutamic oxalacetic transaminase in human tissues to the patterns in serum of patients with neoplastic disease. Am. J. Med. 40 231.

    Google Scholar 

  • Shows, T. B., and Ruddle, F. H. (1968). Malate dehydrogenase: evidence for tetrameric structure in Mus musculus. Science 160 1356.

    Google Scholar 

  • Shows, T. B., Ruddle, F. H., and Roderick, T. H. (1969). Phosphoglucomutase electrophoretic variants in the mouse. Biochem. Genet. 3 25.

    Google Scholar 

  • Spencer, N., Hopkinson, D. A., and Harris, H. (1964). Phosphoglucomutase polymorphism in man. Nature 204 742.

    Google Scholar 

  • Staats, J. (1966). Nomenclature. In Green, E. L. (ed.), Biology of the Laboratory Mouse, 2nd ed., McGraw-Hill, New York, pp. 45–50.

    Google Scholar 

  • Stein, M. W. (1955). Phosphohexoisomerases from muscle. In Colowick, S., and Kaplan, N. (eds.), Methods in Enzymology, Vol. 1, Academic Press, New York, pp. 299–306.

    Google Scholar 

  • Topper, Y. J. (1957). On the mechanism of action of phosphoglucose isomerase and phosphomannose isomerase. J. Biol. Chem. 225 419.

    Google Scholar 

  • Tsuboi, K. K., Estrada, J., and Hudson, P. B. (1958). Enzymes of the human erythrocytes. IV. Phosphoglucose isomerase, purification and properties. J. Biol. Chem. 231 19.

    Google Scholar 

  • Wallace, M. E. Nature (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by U.S. Public Health Service Grants GM-09966, from General Medical Sciences, and GY 4193.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLorenzo, R.J., Ruddle, F.H. Genetic control of two electrophoretic variants of glucosephosphate isomerase in the mouse (Mus musculus). Biochem Genet 3, 151–162 (1969). https://doi.org/10.1007/BF00520350

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00520350

Keywords

Navigation