Skip to main content
Log in

Beitrag zur Stickstoffbestimmung in keramischen Uranverbindungen

  • Originalabhandlungen
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Summary

The procedure for determining the nitrogen content in ceramic uranium compounds is reported. UN1+x (0≤x ≤0.80) and U(C,N) compounds with high N2 concentration as well as uranium carbides with nitrogen impurity content below 100 ppm were investigated. For determining the nitrogen content in the hightemperature nuclear fuels mentioned the conventional methods, such as the Kjeldahl and Dumas techniques and the vacuum-fusion method, have been modified and adapted to our problem.

The following results are discussed in detail:

  1. 1.

    The elimination of the main source of error with the Kjeldahl method: The low solubility of UN x compounds in conventional acid mixtures.

  2. 2.

    A modified Dumas method in which the CO2 carrier-gas takes part in a chemical reaction whereby nitrogen is quantitatively displaced. This method has been discovered by thermodynamical reasoning and its reliability has been proven by X-ray diffraction analysis. The addition of an oxidizing agent, such as CuO or KClO3, is unnecessary.

  3. 3.

    The determination of the composition of UN1+x compounds by hot extraction. The method is based on the parting of nitrogen from the UN1+x ; compound at temperatures above 1000° C in high vacuum with the formation of stoechiometrical UN.

The applicability of the three analytical methods is confirmed by the agreement of the nitrogen results within the error limits.

The coefficient of variation in the results yielded by the Dumas method, irrespective of the sample composition, is more favourable than that of the Kjeldahl method. The hot-extraction method also yields exact results when UN1+x compounds are analysed. By applying both the Dumas and the Kjeldahl method it is possible not only to determine quantitatively the nitrogen in nitride compounds but also the nitrogen in powdered materials, where it is possibly adsorbed in molecular form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Allbutt, M., A. R. Junkison, and R. G. Carney: AERE-R 4903 (1965).

  2. Anderson, H. J., and J. C. Langford: Anal. Chem. 35, 1093 (1963); vgl. diese Z. 204, 394 (1964).

    Google Scholar 

  3. Anselin, F., G. Dean, R. Lorenzielli, and P. Pascard: Carbides in nuclear energy, Vol. 1, p. 113. London: Macmillan &Co. Ltd. 1964.

    Google Scholar 

  4. Austin, A. E., and A. F. Gerds: BMI-1272 (1958).

  5. Briggs, G., J. Guha, J. Barta, and J. White: Trans. Brit. Ceram. Soc. 62, 221 (1963).

    Google Scholar 

  6. Bugl, J., and A. A. Bauer: J. Am. Ceram. Soc. 47, 425 (1964).

    Google Scholar 

  7. Bugl, J., and A. A. Bauer: Proceedings of the AIME-Symposium on Compounds of Interest in Nuclear Reactor Technology (1964).

  8. Chiotti, P.: J. Am. Ceram. Soc. 35, 123 (1952).

    Google Scholar 

  9. Chubb, W., and R. F. Dickerson: Ceram. Bull. 41, 564 (1962).

    Google Scholar 

  10. Coulombeau, J., et E. Jaudon: Chim. Anal. (Paris) 42, 61 (1960); vgl. diese Z. 178, 67 (1960).

    Google Scholar 

  11. Dell, R. M., and M. Allbutt: AERE-R 4253 (1963).

  12. Evans, P. E.: J. Am. Ceram. Soc. 45, 305 (1962).

    Google Scholar 

  13. Henney, J., D. T. Livey, and N. A. Hill: AERE-R 4176 (1963).

  14. Imoto, S., T. Sano, Y. Takada, K. Yamamoto, K. Watanabe, T. Isoda, and H. Uchikoshi: Carbides in nuclear Energy, Vol. 1, p. 7. London: Macmillan & Co. Ltd. 1964.

    Google Scholar 

  15. Imoto, S., and H. J. Stöcker: Thermodynamics, Vol. II, p. 533. Vienna: IAEA 1966.

    Google Scholar 

  16. Katsura, M., S. Imoto, and T. Sano: J. Nucl. Sci. Techn. 1, 22 (1964).

    Google Scholar 

  17. Kempter, C. P., and R. O. Elliott: J. Chem. Phys. 30, 1524 (1959).

    Google Scholar 

  18. Kraus, T.: Schweiz. Arch. angew. Wiss. Techn. 28, 452 (1962).

    Google Scholar 

  19. Lathouse, J., F. E. Huber Jr., and D. L. Chase: Anal. Chem. 31, 1606 (1959).

    Google Scholar 

  20. Leitnaker, J. M., and W. G. Witteman: J. Chem. Phys. 36, 1445 (1962).

    Google Scholar 

  21. Lemm, H.: Private Mitteilung (Jan. 1965).

  22. Magnier, P., J. Trouve, and A. Accary: Carbides in nuclear energy, Vol. 1, p. 95. London: Macmillan & Co. Ltd. 1964.

    Google Scholar 

  23. Mallett, M. W., and A. F. Gerds: J. Electrochem. Soc. 102, 292 (1955).

    Google Scholar 

  24. Milner, G. W. C., I. G. Jones, D. Crossley, and G. Phillips: AERE-R 4713 (1964).

  25. Milner, G. W. C., I. G. Jones, and G. Phillips: AERE-R 5002 (1965).

  26. Milner, G. W. C., G. Phillip, I. G. Jones, D. Crossley, and D. H. Rowe: Carbides in nuclear energy, Vol. 1, p. 447. London: Macmillan & Co. Ltd. 1964.

    Google Scholar 

  27. Milner, G. W. C., D. H. Rowe, E. Foster, and G. Phillips: AERE-R 4644 (1964).

  28. Naoumidis, A., and H. J. Stöcker: Proceedings Meeting on Thermodynamics of Ceramic Systems, London, 19.–21. 4. 1966 (im Druck).

  29. Nickel, H., J. Rottmann, H. J. Stöcker u. A. Köster-Pflugmacher: diese Z. 209, 226 (1965).

    Google Scholar 

  30. Nickel, H., J. Rottmann, H. J. Stöcker, A. Naoumidis u. A. Köster-Pflugmacher: diese Z. 221, 206 (1966).

    Google Scholar 

  31. Rand, M. H., and O. Kubaschewski: AERE-R 3487 (1960).

  32. Rodden, C. J.: Analytical chemistry of the Manhattan Project, p. 208. New York: McGraw Hill 1950.

    Google Scholar 

  33. Rundle, R. E., N. C. Baenziger, A. S. Newton, A. H. Danne, T. H. Butler, I. B. Johns, W. Tucker, and P. Figard: TID-5290 (1958); Chemistry of Uranium, Edit. Katz, I. S., and E. Rabinowitsch.

  34. Rundle, R. E., N. C. Baenziger, A. S. Wilson, and R. H. McDonald: J. Am. Chem. Soc. 70, 99 (1948).

    Google Scholar 

  35. Sinclair, V. M., W. Davies, and K. R. Melhuish: Talanta 12, 841 (1965).

    Google Scholar 

  36. Sloman, H. A., C. A. Harvey, and O. Kubaschewski: J. Inst. Metals 80, 391 (1951/52).

    Google Scholar 

  37. Stöcker, H. J., u. A. Naoumidis: Diskussionstagung des Ausschusses für Reaktormetalle der Deutsch. Ges. Metallkunde, Jülich, 10.–11.11.1966.

  38. Stöcker, H. J., A. Naoumidis, A. Köster-Pflugmacher u. H. Nickel: Vortrag anläßl. d. 65. Hauptversamml. Bunsenges., Freudenstadt, 19.–22. 5. 1966.

  39. Stöcker, H. J., H. Nickel, S. Imoto u. A. Naoumidis: Ber. Deut. Keram. Ges. 43, 130 (1966).

    Google Scholar 

  40. Taylor, K. M., and C. H. McMurtry: ORO-400 (Febr. 1961).

  41. Thümmler, F.: Ber. Deut. Keram. Ges. 40, 159 (1963).

    Google Scholar 

  42. Thümmler, F., G. Ondracek u. K. Dalal: Z. Metallk. 56, 535 (1965).

    Google Scholar 

  43. Trzebiatowski, W., R. Troc, and J. Leciejewicz: Bull. Acad. Polon. Sci. Ser. Chim. Sci. 10, 395 (1962).

    Google Scholar 

  44. Vaughan, D. A.: J. Metals 8, 78 (1956).

    Google Scholar 

  45. Williams, J., and R. A. J. Sambell: J. Less. Common Metals 1, 217 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Vorgetragen auf dem Symposium über Reaktorchemie der GDCh in Jülich am 3. und 4.10.1966.

Die vorstehende Arbeit ist im Rahmen des THTR-Assoziationsvertrages zwischen der Europäischen Atomgemeinschaft, der Brown Boveri/Krupp Reaktorbau GmbH und der Kernforschungsanlage Jülich des Landes Nordrhein-Westfalen e.V. entstanden.

Für die tatkräftige Mithilfe bei den experimentellen Untersuchungen danken wir Frau J. Jansen und Herrn A. Schirbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naoumidis, A., Nickel, H., Rottmann, J. et al. Beitrag zur Stickstoffbestimmung in keramischen Uranverbindungen. Z. Anal. Chem. 226, 175–192 (1967). https://doi.org/10.1007/BF00502998

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502998

Navigation