Skip to main content
Log in

Ribosomal DNA sequences attached to the nuclear matrix

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The organization of rat liver ribosomal DNA (rDNA) as matrix-attached DNA loops was examined using a protocol which fractionates chromatin from discrete regions of DNA loops. Southern blot analysis of matrixattached and solubilized chromatin DNA fragments demonstrated that rDNA is associated with the matrix via its 5′ and 3′ nontranscribed spacer sequences (NTS). Although the 45 S rRNA coding sequences were approximately threefold enriched in matrix preparations, the recovery of this DNA (unlike the NTS) was dependent on the extent of nuclease digest and proportional to the length of the matrix-attached DNA fragments. The data suggest that rDNA is organized as matrix-attached DNA loops and only the NTS are directly involved in matrix binding. Further, we demonstrated that while the kinetics and extent of nuclease digestion were similar in all regions of the DNA loops, the nuclease digestion pattern of bulk nuclear and matrix DNA showed a typical nucleosome organization, but the rDNA fragments retained with the nuclear matrix did not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agutter, P. S., and Richardson, J. C. W. (1980). Nuclear non-chromatin proteinaceous structures: Their role in the organization and function of the interphase nucleus. J. Cell Sci. 44395.

    Google Scholar 

  • Basler, J., Hastie, N. D., Pietras, D., Matsui, S. I., Sandberg, A. A., and Berezney, R. (1981). Hybridization of nuclear matrix attached deoxyribonucleic acid fragments. Biochemistry 206921.

    Google Scholar 

  • Berezney, R. (1984). Organization and functions of the nuclear matrix. In Hnilica, L. S. (ed). Chromosomal Nonhistone Proteins Structural Associations CRC Press, Boca Raton, Fla., pp. 120–180.

    Google Scholar 

  • Berezney, R., and Buchholtz, L. A. (1981). Isolation and characterization of rat liver nuclear matrices containing high molecular weight deoxyribonucleic acid. Biochemistry 204995.

    Google Scholar 

  • Bodnar, J. W., Jones, C. J., Coombs, D. H., Pearson, G. D., and Ward, D. C. (1983). Proteins tightly bound to HeLa cell DNA at nuclear matrix attachment sites. Mol. Cell. Biol. 31567.

    Google Scholar 

  • Bolla, R. I., Braaten, D. C., Shiomi, Y., Herbert, M. B., and Schlessinger, D. (1985). Localization of specific rDNA spacer sequences to the mouse L-cell nucleolar matrix. Mol. Cell. Biol. 51287.

    Google Scholar 

  • Borchsenius, S., Bonven, B., Leer, J. C., and Westergaard, O. (1981). Nuclease-sensitive regions on the extrachromosomal r-chromatin from tetrahymena pyriforms. Eur. J. Biochem. 117245.

    Google Scholar 

  • Bowen, B., Steinberg, J., Laemmli, U. K., and Weintraub, H. (1980). The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 81.

    Google Scholar 

  • Chikaraishi, D. M., Buchanan, L., Danna, K. J., and Harrington, C. A. (1983). Genomic organization of rat rDNA. Nucleic Acids Res. 116437.

    Google Scholar 

  • Ciejek, E. M., Tsai, M. J., and O'Malley, B. W. (1983). Actively transcribed genes are associated with the nuclear matrix. Nature 306608.

    Google Scholar 

  • Cockerill, P. N., and Garrard, W. T. (1986). Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in the region containing topoisomerase II sites. Cell 44273.

    Google Scholar 

  • Davis, A. H., Reudelhuber, T. L., and Garrard, W. T. (1983). Variegated chromatin structures of mouse ribosomal RNA genes. J. Mol. Biol. 167133.

    Google Scholar 

  • Denhardt, D. J. (1966). A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23641.

    Google Scholar 

  • Earnshaw, W. C., and Heck, M. M. S. (1985). Localization of topoisomerase II in mitotic chromosomes. J. Cell Biol. 1001716.

    Google Scholar 

  • Earnshaw, W. C., and Laemmli, U. K. (1983). Architecture of metaphase chromosomes and chromosome scaffolds. J. Cell Biol. 9684.

    Google Scholar 

  • Earnshaw, W. C., Halligan, B., Cooke, C. A., Heck, M. M. S., and Liu, L. F. (1985). Topoisomerase II is a structural component of mitotic chromosomes. J. Cell Biol. 1001706.

    Google Scholar 

  • Ferrer, P., Caizergues-Ferrer, M., Amalric, F., and Zalta, J. P. C. (1980). Structure of nucleolar and rDNA chromatin in CHO cells. Biol. Cell. 39155.

    Google Scholar 

  • Foe, V. E. (1977). Modulation of ribosomal RNA synthesis in Oncopeltus faciatus: An electron microscopic study of the relationship between changes in chromatin structure and transcriptional activity. Cold Spring Harbor Symp. Quant. Biol. 42723.

    Google Scholar 

  • Foster, K. A., and Collins, J. M. (1985). The interrelation between DNA synthesis rates and DNA polymerases bound to the nuclear matrix in synchronized HeLa cells. J. Biol. Chem. 2604229.

    Google Scholar 

  • Giri, C. P., and Gorovsky, M. A. (1980). DNase I sensitivity of ribosomal genes in isolated nucleosome core particles. Nucleic Acids Res. 8197.

    Google Scholar 

  • Goldberg, G. J., Collier, I., and Cassel, A. (1983). Specific DNA sequences associated with the nuclear matrix in synchronized mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 806887.

    Google Scholar 

  • Gupta, R. C., Dighe, N. R., Randerath, K., and Smith, H. C. (1985). Distribution of initial and persistent 2-acetylaminofluorene-induced DNA adducts within DNA loops. Proc. Natl. Acad. Sci. USA 826605.

    Google Scholar 

  • Hentzen, P. C., Rho, J. H., and Bekhor, I. (1984). Nuclear matrix DNA from chicken erythrocytes contains B-globin gene sequences. Proc. Natl. Acad. Sci. USA 81304.

    Google Scholar 

  • Jackson, D. A., Cook, P. R., and Patel, S. B. (1984). Attachment of repeated sequences to the nuclear cage. Nucleic Acids Res. 126709.

    Google Scholar 

  • Jeppesen, P. G. N., and Bankier, A. T. (1979). A partial characterization of DNA fragments protected from nuclease degradation in histone depleted metaphase chromosomes of the Chinese hamster. Nucleic Acids Res. 749.

    Google Scholar 

  • Kafatos, F. C., Jones, C. W., and Efstratiadis, A. (1979). Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 71541.

    Google Scholar 

  • Lebkowski, J. S., and Laemmli, U. K. (1982a). Evidence for two levels of DNA folding in histone-depleted HeLa interphase nuclei. J. Mol. Biol. 156309.

    Google Scholar 

  • Lebkowski, J. S., and Laemmli, U. K. (1982b). Non-histone proteins and long-range organization of HeLa interphase DNA. J. Mol. Biol. 156325.

    Google Scholar 

  • Matsumoto, L. H. (1981). Enrichment of satellite DNA on the nuclear matrix of bovine cells. Nature (London) 294481.

    Google Scholar 

  • McCready, S. J., Godwin, J., Mason, D. W., Brazell, I. A., and Cook, P. R. (1980). DNA is replicated at the nuclear cage. J. Cell Sci. 46365.

    Google Scholar 

  • McKnight, S. L., Martin, K. A., Beyer, A. L., and Miller, O. L. (1979). Visualization of functionally active chromatin. In Busch, H. (ed.), The Cell Nucleus, 7 Academic Press, New York, pp. 97–122.

    Google Scholar 

  • Miesfeld, R., Krystal, M., and Arnheim, N. (1981). A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human delta and fetal globin genes. Nucleic Acids Res. 95931.

    Google Scholar 

  • Mirkovitch, J., Mirault, M. E., and Laemmli, U. K. (1984). Organization of the higher-order chromatin loop: Specific DNA attachment sites on nuclear scaffold. Cell 39223.

    Google Scholar 

  • Mroczka, D. L., Cassidy, B., Busch, H., and Rothblum, L. I. (1984). Characterization of rat ribosomal DNA. J. Mol. Biol. 174141.

    Google Scholar 

  • Pardoll, D. M., and Vogelstein, B. (1980). Sequence analysis of nuclear matrix associated DNA from rat liver. Exp. Cell Res. 128466.

    Google Scholar 

  • Paulson, J. R., and Laemmli, U. K. (1977). The structure of histone-depleted metaphase chromosomes. Cell 12817.

    Google Scholar 

  • Prior, C. P., Cantor, C. R., Johnson, E. M., Littau, V. C., and Allfrey, V. G. (1983). Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell 341033.

    Google Scholar 

  • Pruitt, S. C., and Reeder, R. H. (1984). Effect of topological constraint on transcription of ribosomal DNA in Xenopus oocytes. J. Mol. Biol. 174121.

    Google Scholar 

  • Razin, S. V., Mantieva, V. L., and Georgiev, G. P. (1979). The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomes. Nucleic Acids Res. 71713.

    Google Scholar 

  • Razin, S. V., Chernokohovostou, V. V., Roodyn, A. V., Zbarsky, I. B., and Georgiev, G. P. (1981). Proteins tightly bound to DNA in the regions of DNA attachment to the skeletal structures of interphase nuclei and metaphase chromosomes. Cell 2765.

    Google Scholar 

  • Reeves, R. (1976). Ribosomal genes of Xenopus laevis: Evidence of nucleosomes in transcriptionally active chromatin. Science 194529.

    Google Scholar 

  • Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P. (1977). Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113237.

    Google Scholar 

  • Robinson, S. I., Small, D., Idzerda, R., McKnight, G. S., and Vogelstein, B. (1983). The association of transcriptionally active genes with the nuclear matrix of the chicken oviduct. Nucleic Acids Res. 115113.

    Google Scholar 

  • Rothblum, L. I., Mamrack, P. M., Kunkle, H. M., Olson, O. J., and Busch, H. (1977). Fractionation of nucleoli. Enzymatic and two-dimensional polyacrylamide gel electrophoretic analysis. Biochemistry 164716.

    Google Scholar 

  • Rothblum, L. I., Parker, D. L., and Cassidy, B. (1982a). Isolation and characterization of rat ribosomal DNA clones. Gene 1775.

    Google Scholar 

  • Rothblum, L. I., Reddy, R., and Cassidy, B. (1982b). Transcription initiation site of rat ribosomal DNA. Nucleic Acids Res. 107345.

    Google Scholar 

  • Scheer, U., and Zentgraf, H. (1982). Morphology of nucleolar chromatin in electron microscopic spread preparations. In Busch, H., and Rothblum, L. I. (eds.), The Cell Nucleus, 11 Academic Press, New York, pp. 143–191.

    Google Scholar 

  • Shaper, J. H., Pardoll, D. M., Kaufmann, S. H., Barrack, E. R., Vogelstein, B., and Coffee, D. S. (1979). The relationship of the nuclear matrix to cellular structure and function. Adv Enzyme Regul. 17213.

    Google Scholar 

  • Small, D., Nelkin, B., and Vogelstein, B. (1982). Nonrandom distribution of repeated DNA sequences with respect to supercoiled loops and the nuclear matrix. Proc. Natl. Acad. Sci. USA 795911.

    Google Scholar 

  • Smith, H. C., and Berezney, R. (1982). Nuclear matrix bound deoxyribonucleic acid synthesis: An in vitro system. Biochemistry 216751.

    Google Scholar 

  • Smith, H. C., and Berezney, R. (1983). Dynamic domains of DNA polymerase alpha in regenerating rat liver. Biochemistry 223042.

    Google Scholar 

  • Smith, H. C., Puvion, E., Buchholtz, L. A., and Berezney, R. (1984). Spatial distribution of DNA loop attachment and replicational sites in the nuclear matrix. J. Cell Biol. 991794.

    Google Scholar 

  • Smith, H. C., Ochs, R. L., Fernandez, E. A., and Spector, D. L. (1986). Macromolecular domains containing nuclear protein p107 and U-snRNP protein p28: Further evidence for an in situ nuclear matrix. Mol. Cell. Biochem. 70151.

    Google Scholar 

  • Smith, H. C., and Ochs, R. L. Lin, D., and Chinault, A. C. (1987). Ultrastructural and biochemical comparisons of nuclear matrices prepared by high salt or LIS extraction. Mol. Cell. Biochem. 7749.

    Google Scholar 

  • Treco, D., Brownell, E., and Arnheim, N. (1982). The ribosomal gene nontranscribed spacer. In Busch, H., and Rothblum, R. I. (eds.), The Cell Nucleus, 12 Academic Press, New York, pp. 101–126.

    Google Scholar 

  • Vogelstein, B., Pardoll, D. M., and Coffey, D. S. (1980). Supercoiled loops and eukaryotic DNA replication. Cell 2279.

    Google Scholar 

  • Wahl, G. M., Stern, M., and Stark, G. R. (1979). Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc. Natl. Acad. Sci. USA 763683.

    Google Scholar 

  • Werner, D., Chanpu, S., Muller, M., Spiess, E., and Plagens, U. (1984). Antibodies to the most tightly bound proteins in eukaryotic DNA. Exp. Cell Res. 151384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were supported by Cancer Research Center Grant CA-10893, P4, P9, awarded by the National Cancer Institute, Department of Health the Human Services, Public Health Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, H.C., Rothblum, L.I. Ribosomal DNA sequences attached to the nuclear matrix. Biochem Genet 25, 863–879 (1987). https://doi.org/10.1007/BF00502606

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502606

Key words

Navigation