Skip to main content
Log in

Nucleolar DNA: the host and the guests

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akamatsu Y, Kobayashi T (2015) The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol Cell Biol 35:1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert B, Léger-Silvestre I, Normand C, Ostermaier MK, Pérez-Fernández J, Panov KI, Zomerdijk JC, Schultz P, Gadal O (2011) RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J Cell Biol 192:277–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) DNA and chromosomes. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) Molecular biology of the cell, 4th edn. Garland Science, New York, pp 191–234

    Google Scholar 

  • Anglana M, Apiou F, Bensimon A, Debatisse M (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114:385–394

    Article  CAS  PubMed  Google Scholar 

  • Anosova I, Melnik S, Tripsianes K, Kateb F, Grummt I, Sattler M (2015) A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes. Nucl Acids Res 43:5208–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shue C, Fatyol K, Fahlen S, Hydbring P, Soderberg O, Grummt I, Larsson LG, Wright A (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310

    Article  CAS  PubMed  Google Scholar 

  • Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    CAS  PubMed  Google Scholar 

  • Audas TE, Jacob MD, Lee S (2012a) The nucleolar detention pathway: a cellular strategy for regulating molecular networks. Cell Cycle 11:2059–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audas TE, Jacob MD, Lee S (2012b) Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 45:147–157

    Article  CAS  PubMed  Google Scholar 

  • Babu KA, Verma RS (1985) Structural and functional aspects of nucleolar organizer regions (NORs) of human chromosomes. Int Rev Cytol 94:151–176

    Article  CAS  PubMed  Google Scholar 

  • Bartholdi MF (1991) Nuclear distribution of centromeres during the cell cycle of human diploid fibroblasts. J Cell Sci 99:255–263

    PubMed  Google Scholar 

  • Bartsch I, Schoneberg C, Grummt I (1987) Evolutionary changes of sequences and factors that direct transcription termination of human and mouse ribosomal genes. Mol Cell Biol 7:2521–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265:2096–2098

    Article  CAS  PubMed  Google Scholar 

  • Berger AB, Cabal GG, Fabre E, Duong T, Buc H, Nehrbass U, Olivo-Marin JC, Gadal O, Zimmer C (2008) High-resolution statistical mapping reveals gene territories in live yeast. Nat Methods 5:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Bergold PJ, Campbell GR, Littau VC, Johnson EM (1983) Sequence and hairpin structure of an inverted repeat series at termini of the Physarum extrachromosomal rDNA molecule. Cell 32:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Billia F, Deboni U (1991) Localization of centromeric satellite and telomeric DNA sequences in dorsal root ganglion neurons, in vitro. J Cell Sci 100:219–226

    CAS  PubMed  Google Scholar 

  • Birch JL, Zomerdijk JC (2008) Structure and function of ribosomal RNA gene chromatin. Biochem Soc Trans 36(Pt 4):619–624. doi:10.1042/BST0360619

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (1978) A study of early events in ribosomal gene amplification. Cold Spring Harb Symp Quant Biol 42:1179–1183

    Article  CAS  PubMed  Google Scholar 

  • Birnstiel ML, Chipchase M, Speirs J (1971) The ribosomal RNA cistrons. Prog Nucl Acid Res Mol Biol 11:351

    Article  CAS  Google Scholar 

  • Bolla RI, Braaten DC, Shiomi Y, Hebert MB, Schlessinger D (1985) Localization of specific rDNA spacer sequences to the mouse L-cell nucleolar matrix. Mol Cell Biol 5:1287–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth DG, Takagi M, Sanchez-Pulido L, Petfalski E, Vargiu G, Samejima K, Imamoto N, Ponting CP, Tollervey D, Earnshaw WC, Vagnarelli P (2014) Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. Elife 27(3):e01641. doi:10.7554/eLife.01641

    Google Scholar 

  • Braga EA, Kapanadze B, Kupriyanova NS, Ivanova GM, Brodyanskii VM, Nechvolodov KK, Skutov GA, Ryskov AP, Nosikov NN, Yankovskii NK (1995) Distribution analysis of 7 microsatellite motifs in cosmids of human chromosome 13 library. Mol Biol 29:584–590

    Google Scholar 

  • Brewer BJ, Fangman WL (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643

    Article  CAS  PubMed  Google Scholar 

  • Butler DK, Metzenberg RL (1993) Amplification of the nucleolus organizer region during the sexual phase of Neurospora crassa. Chromosoma 102:519–525

    Article  CAS  PubMed  Google Scholar 

  • Caburet S, Conti C, Schurra Lebofsky CR, Edelstein SJ, Bensimon A (2005) Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 15:1079–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho C, Pereira HM, Ferreira J, Pina C, Mendonca D, Rosa AC, Carmo-Fonseca M (2001) Chromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus. Mol Biol Cell 12:3563–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casafont I, Navascues J, Pena E, Lafarga M, Berciano MT (2006) Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5′-fluorouridine into nascent RNA. Neurosci 14:453–462

    Article  CAS  Google Scholar 

  • Cassidy BG, Yang-Yen HF, Rothblum LI (1986) Transcriptional role for the nontranscribed spacer of rat ribosomal DNA. Mol Cell Biol 6:2766–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheutin T, O’Donohue MF, Beorchia A, Vandelaer M, Kaplan H, Deféver B, Ploton D, Thiry M (2002) Three-dimensional organization of active rRNA genes within the nucleolus. J Cell Sci 115(Pt 16):3297–3307

    CAS  PubMed  Google Scholar 

  • Clos J, Normann A, Ohrlein A, Grummt I (1986) The core promoter of mouse rDNA consists of two functionally distinct domains. Nucl Acids Res 14:7581–7595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cmarko D, Verschure PJ, Rothblum LI, Hernandez-Verdun D, Amalric F, van Driel R, Fakan S (2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181–187

    Article  CAS  PubMed  Google Scholar 

  • Cmarko D, Smigova J, Minichova L, Popov A (2008) Nucleolus: the ribosome factory. Histol Histopathol 23:1291–1298

    CAS  PubMed  Google Scholar 

  • Comings DE (1980) Arrangement of chromatin in the nucleus. Hum Genet 53:131–143

    Article  CAS  PubMed  Google Scholar 

  • Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761

    Article  CAS  PubMed  Google Scholar 

  • Cong R, Das S, Ugrinova I, Kumar S, Mongelard F, Wong J, Bouvet P (2012) Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription. Nucl Acids Res 40:9441–9454. doi:10.1093/nar/gks720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Copenhaver GP, Putnam CD, Denton ML, Pikaard CS (1994) The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucl Acids Res 22:2651–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153:773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Winter RF, Moss T (1986) The ribosomal spacer in Xenopus laevis is transcribed as part of the primary ribosomal RNA. Nucl Acids Res 14:6041–6051

    Article  PubMed  PubMed Central  Google Scholar 

  • Denissov S, Lessard F, Mayer C, Stefanovsky V, van Driel M, Grummt I, Moss T, Stunnenberg HG (2011) A model for the topology of active ribosomal RNA genes. EMBO Rep 12:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derenzini M, Pasquinelli G, O’Donohue MF, Ploton D, Thiry M (2006) Structural and functional organization of ribosomal genes within the mammalian cell nucleolus. J Histochem Cytochem 54:131–145

    Article  CAS  PubMed  Google Scholar 

  • Derenzini M, Olins AL, Olins DE (2014) Chromatin structure in situ: the contribution of DNA ultrastructural cytochemistry. Eur J Histochem 58:2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diermeier SD, Németh A, Rehli M, Grummt I, Längst G (2013) Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I binding sites. PLoS Genet 9:e1003786. doi:10.1371/journal.pgen.1003786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrova DS (2011) DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci. J Cell Sci 124:2743–2752

    Article  CAS  PubMed  Google Scholar 

  • Doelling J, Pikaard C (1995) The minimal ribosomal RNA promoter of Arabidopsis thaliana includes a critical element at the transcription initiation site. Plant J 8:683–692

    Article  CAS  PubMed  Google Scholar 

  • Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S (2000) Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol Biol Cell 11:2705–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumenco VM, Wejksnora PJ (1986) Characterization of the region around the start point of transcription of ribosomal RNA in the Chinese hamster. Gene 46:227–235

    Article  CAS  PubMed  Google Scholar 

  • Edenberg HJ, Huberman JA (1975) Eukaryotic chromosome replication. Annu Rev Genet 9:245–284

    Article  CAS  PubMed  Google Scholar 

  • Elder JF Jr, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    Article  CAS  PubMed  Google Scholar 

  • Erickson JM, Schmickel RD (1985) A molecular basis for discrete size variation in human ribosomal DNA. Am J Hum Genet 37:311–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fedoriw AM, Calabrese JM, Mu W, Yee D, Magnuson T (2012) Differentiation-driven nucleolar association of the mouse imprinted Kcnq1 locus. G3 2(12):1521–1528. doi:10.1534/g3.112.004226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley AR, McStay B (2013) The shared genomic architecture of human nucleolar organizer regions. Genome Res 23:2003–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebrane-Younes J, Fomproix N, Hernandez-Verdun D (1997) When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J Cell Sci 110:2429–2440

    CAS  PubMed  Google Scholar 

  • Gencheva M, Anachkova B, Russev G (1996) Mapping the sites of initiation of DNA replication in rat and human rRNA genes. J Biol Chem 271:2608–2614

    Article  CAS  PubMed  Google Scholar 

  • Gerber JK, Gögel E, Berger C, Wallisch M, Müller F, Grummt I, Grummt F (1997) Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 90:559–567

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roman N, Felton-Edkins ZA, Kenneth NS, Goodfellow SJ, Athineos D, Zhang J, Ramsbottom BA, Innes F, Kantidakis T, Kerr ER, Brodie J, Grandori C, White RJ (2006) Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem Soc Symp 73:141–154

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez IL, Sylvester JE (1995) Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 27:320–328

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez IL, Sylvester JE (2001) Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics 73:255–263

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez IL, Gorski JL, Campen TJ, Dorney DJ, Erickson JM, Sylvester JE, Schmickel RD (1985) Variation among human 28S ribosomal RNA genes. Proc Natl Acad Sci 82:7666–7670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez IL, Petersen R, Sylvester JE (1989) Independent insertion of alu elements in the human ribosomal spacer and their concerted evolution. Mol Biol Evol 6:413–423

    CAS  PubMed  Google Scholar 

  • Gonzalez IL, Chambers C, Gorski JL, Stambolian D, Schmickel RD, Sylvester JE (1990) Sequence and structure correlation of human ribosomal transcribed spacers. J Mol Biol 212:27–35

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez IL, Wu S, Li W-M, Kuo BA, Sylvester JE (1992) Human ribosomal RNA intergenic spacer sequence. Nucl Acids Res 20:5846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorski SA, Snyder SK, John S, Grummt I, Misteli T (2008) Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol Cell 30:486–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318

    Article  CAS  PubMed  Google Scholar 

  • Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA (2005) Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 7:295–302

    Article  CAS  PubMed  Google Scholar 

  • Grob A, Colleran C, McStay B (2014) Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev 28:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grummt I, Maier U, Ohrlein A, Hassouna N, Bachellerie JP (1985) Transcription of mouse rDNA terminates downstream of the 3″ end of 28S RNA and involves interaction of factors with repeated sequences in the 3″ spacer. Cell 43:801–810

    Article  CAS  PubMed  Google Scholar 

  • Grummt I, Rosenbauer H, Niedermeyer I, Maier U, Ohrlein A (1986) A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 45:837–846

    Article  CAS  PubMed  Google Scholar 

  • Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R (2012) Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell 45:706–707

    Article  CAS  Google Scholar 

  • Haaf T, Schmid M (1989) Centromeric association and non-random distribution of centromeres in human tumour cells. Hum Genet 81:137–143

    Article  CAS  PubMed  Google Scholar 

  • Haaf T, Schmid M (1991) Chromosome topology in mammalian interphase nuclei. Exp Cell Res 192:325–332

    Article  CAS  PubMed  Google Scholar 

  • Haaf T, Ward DC (1996) Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 224:163–173

    Article  CAS  PubMed  Google Scholar 

  • Haaf T, Hayman DL, Schmid M (1991) Quantitative determination of rDNA transcription units in vertebrate cells. Exp Cell Res 193:78–86

    Article  CAS  PubMed  Google Scholar 

  • Hacisuleyman E, Goff LA, Trapnell C et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haltiner M, Smale ST, Tjian R (1986) Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis. Mol Cell Biol 6:227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock R (2014) The crowded nucleus. Int Rev Cell Mol Biol 307:15–26

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  CAS  PubMed  Google Scholar 

  • Heitz E (1931) Die Ursache der gesetzmassigen Zahl, Lage, Form und Groesse pflanzlicher Nukleolen. Planta 12:775–844

    Article  Google Scholar 

  • Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I (1998) Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J 17:7373–7381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Héliot L, Mongelard F, Klein C, O’Donohue MF, Chassery JM, Robert-Nicoud M, Usson Y (2000) Nonrandom distribution of metaphase AgNOR staining patterns on human acrocentric chromosomes. J Histochem Cytochem 48:13–20

    Article  PubMed  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci USA 69:3394–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Hernández A, Soto-Reyes E, Ortiz R, Arriaga-Canon C, Echeverría-Martinez OM, Vázquez-Nin GH, Recillas-Targa F (2012) Changes of the nucleolus architecture in absence of the nuclear factor CTCF. Cytogenet Gen Res 136:89–96

    Article  CAS  Google Scholar 

  • Hozák P, Schöfer C, Sylvester J, Wachtler F (1993) A study on nucleolar DNA: isolation of DNA from fibrillar components and ultrastructural localization of different DNA probes. J Cell Sci 104:1199–1205

    PubMed  Google Scholar 

  • Hu CH, McStay B, Jeong SW, Reeder RH (1994) xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol Cell Biol 14:2871–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Jia J, Wu C, Yao M, Li M, Jin J, Jiang C, Cai Y, Pei D, Pan G, Yao H (2013) Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 288:26067–26077. doi:10.1074/jbc.M113.486175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–696

    Article  CAS  PubMed  Google Scholar 

  • Jacob MD, Audas TE, Mullineux ST, Lee S (2012) Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal intergenic spacer. Nucleus 3:315–319

    Article  PubMed  Google Scholar 

  • Jacob MD, Audas TE, Uniacke J, Trinkle-Mulcahy L, Lee S (2013) Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol Biol Cell 24:2943–2953. doi:10.1091/mbc.E13-04-0223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakociunas T, Domange Jordö M, Aït Mebarek M, Bünner CM, Verhein-Hansen J, Oddershede LB, Thon G (2013) Subnuclear relocalization and silencing of a chromosomal region by an ectopic ribosomal DNA repeat. Proc Natl Acad Sci USA 110:E4465–E4473. doi:10.1073/pnas.1315581110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan P, Mannervik M, Tora L, Carmo-Fonseca M (1996) In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133:225–234

    Article  CAS  PubMed  Google Scholar 

  • Junera HR, Masson C, Geraud G, Hernandez-Verdun D (1995) The three-dimensional organization of ribosomal genes and the architecture of the nucleoli vary with G1, S and G2 phases. J Cell Sci 108:3427–3441

    CAS  PubMed  Google Scholar 

  • Kalmárová M, Smirnov E, Mašata M, Koberna K, Ligasová A, Popov A, Raška I (2007) Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli. J Struct Biol 160:49–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalmárová M, Kovácik L, Popov A, Testillano SP, Smirnov E (2008) Asymmetrical distribution of the transcriptionally competent NORs in mitosis. J Struct Biol 163:40–44. doi:10.1016/j.jsb.2008.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan FS, Murray J, Sylvester JE, Gonzalez IL, O’Connor JP, Doering JL, Muenke M, Emanuel BS, Zasloff MA (1993) The topographic organization of repetitive DNA in the human nucleolus. Genomics 15:123–132

    Article  CAS  PubMed  Google Scholar 

  • Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B (2013) Single-cell dynamics of genome–nuclear lamina interactions. Cell 153:178–192

    Article  CAS  PubMed  Google Scholar 

  • Koberna K, Malínský J, Pliss A, Mašata M, Večeřová J, Fialová M, Bednár J, Raška I (2002) Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J Cell Biol 157:743–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kominami R, Urano Y, Mishima Y, Muramatsu M (1981) Organization of ribosomal RNA gene repeats of the mouse. Nucl Acids Res 14:3219–3233

    Article  Google Scholar 

  • Kuhn A, Normann A, Bartsch I, Grummt I (1988) The mouse ribosomal gene terminator consists of three functionally separable sequence elements. EMBO J 7:1497–1502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kupriyanova NS, Netchvolodov KK, Sadova AA, Cherepanova MD, Ryskov AP (2015) Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning. Gene 572:237–242

    Article  CAS  PubMed  Google Scholar 

  • La Volpe A, La Mantia G, Gargiulo G, Malva C (1984) Regulation of rRNA gene number in Drosophila melanogaster: new aspects resulting from the use of free duplications. Mol Gen Genet 194:485–488

    Article  PubMed  Google Scholar 

  • La Volpe A, Simeone A, Simeone A, D’Esposito M, Scotto L, Fidanza V, de Falco A, Boncinelli E (1985) Molecular analysis of the heterogeneity region of the human ribosomal spacer. J Mol Biol 183:213–223

    Article  PubMed  Google Scholar 

  • Labhart P, Reeder RH (1986) Characterization of three sites of RNA 3′ end formation in the Xenopus ribosomal gene spacer. Cell 45:431–443

    Article  CAS  PubMed  Google Scholar 

  • Lam YW, Trinkle-Mulcahy L (2015) New insights into nucleolar structure and function. F1000Prime Rep 7:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebofsky R, Bensimon A (2005) DNA replication origin plasticity and perturbed fork progression in human inverted repeats. Mol Cell Biol 25:6789–6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Léger I, Guillaud M, Krief B, Brugal G (1994) Interactive computer-assisted analysis of chromosome 1 colocalization with nucleoli. Cytometry 16:313–323

    Article  PubMed  Google Scholar 

  • Leung AK, Gerlich D, Miller G, Lyon C, Lam YW, Lleres D, Daigle N, Zomerdijk J, Ellenberg J, Lamond AI (2004) Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol 166:787–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucl Acids Res 15:5323–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin B (1980) Gene expression, vol 2. Wiley, New York

    Google Scholar 

  • Li Z, Hann SR (2013) Nucleophosmin is essential for c-Myc nucleolar localization and c-Myc-mediated rDNA transcription. Oncogene 32:1988–1994

    Article  CAS  PubMed  Google Scholar 

  • Li J, Langst G, Grummt I (2006) NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J 25:5735–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linskens MHK, Huberman JA (1988) Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol Cell Biol 8:4927–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little RD, Platt TH, Schildkraut CL (1993) Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol 13:6600–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  CAS  PubMed  Google Scholar 

  • Lykke-Andersen S, Mapendano CK, Jensen TH (2011) An ending is a new beginning: transcription termination supports re-initiation. Cell Cycle 10:863–865

    Article  CAS  PubMed  Google Scholar 

  • Maden BE, Dent CL, Farrell TE, Garde J, McCallum FS, Wakeman JA (1987) Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem J 246:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magdalou I, Lopez BS, Pasero P, Lambert SAE (2014) The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 30:154–164

    Article  CAS  PubMed  Google Scholar 

  • Mais C, Wright JE, Prieto JL, Raggett SL, McStay B (2005) UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuelidis L (1984) Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci 81:3123–3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuelidis L, Borden J (1988) Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 96:397–410

    Article  CAS  PubMed  Google Scholar 

  • Matera AG, Frey MR, Margelot K, Wolin SL (1995) A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol 129:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Matheson TD, Kaufman PD (2015) Grabbing the genome by the NADs. Chromosoma. doi:10.1007/s00412-015-0527-8

    PubMed  Google Scholar 

  • Mayer C, Schmitz KM, Li J, Grummt I, Santoro R (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22:351–361

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Neubert M, Grummt I (2008) The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep 9:774–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1934) The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Zeit Zellforsch Mik Anat 21:294–328

    Article  Google Scholar 

  • McKeown PC, Shaw PJ (2009) Chromatin: linking structure and function in the nucleolus. Chromosoma 118:11–23. doi:10.1007/s00412-008-0184-2

    Article  PubMed  Google Scholar 

  • McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157

    Article  CAS  PubMed  Google Scholar 

  • McStay B, Reeder RH (1986) A termination site for Xenopus RNA polymerase I also acts as an element of an adjacent promoter. Cell 47:913–920

    Article  CAS  PubMed  Google Scholar 

  • Melčák I, Risueño MC, Raška I (1996) Ultrastructural non-isotopic mapping of nucleolar transcription sites in onion protoplasts. J Struct Biol 116:253–263

    Article  PubMed  Google Scholar 

  • Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, van Slegtenhorst M, Wolfe J, Povey S, Beckmann JS, Bensimon A (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277:1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468:109–114

    Article  CAS  PubMed  Google Scholar 

  • Miller OL Jr, Beatty BR (1969) Visualization of nucleolar genes. Science 164:955–957

    Article  PubMed  Google Scholar 

  • Mohammad F, Pandey RR, Nagano T, Chakalova L, Mondal T, Fraser P, Kanduri C (2008) Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol 28:3713–3728. doi:10.1128/MCB.02263-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss T, Stefanovsky VY (1995) Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. In: Cohn WE, Moldave K (eds) Progress in nucleic acids and molecular biology. Academic Press, San Diego, pp 25–66

    Google Scholar 

  • Moss T, Mitchelson K, De Winter RFJ (1985) The promotion of ribosomal transcription in eukaryotes. Oxf Surv Eukaryot Genes 2:207–250

    CAS  PubMed  Google Scholar 

  • Moss T, Stefanovsky V, Langlois F, Gagnon-Kugler T (2006) A new paradigm for the regulation of the mammalian ribosomal RNA genes. Biochem Soc Trans 34:1079–1081

    Article  CAS  PubMed  Google Scholar 

  • Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V (2007) A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49

    Article  CAS  PubMed  Google Scholar 

  • Mougey EB, O’Reilly M, Osheim Y, Miller OL Jr, Beyer A, Sollner-Webb B (1993) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Mroczka DL, Cassidy B, Busch H, Rothblum LI (1984) Characterization of rat ribosomal DNA: the highly repetitive sequences that flank the ribosomal RNA transcription unit are homologous and contain RNA polymerase III transcription initiation sites. J Mol Biol 174:141

    Article  CAS  PubMed  Google Scholar 

  • Müller WG, Rieder D, Karpova TS, John S, Trajanoski Z, McNally JG (2007) Organization of chromatin and histone modifications at a transcription site. J Cell Biol 177:957–967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murano K, Okuwaki M, Hisaoka M, Nagata K (2008) Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 28:3114–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazar RN (2004) Ribosomal processing and ribosome biogenesis in eukaryotes. IUBMB Life 56:457–465

    Article  CAS  PubMed  Google Scholar 

  • Németh A, Längst G (2008) Chromatin organization of active ribosomal RNA genes. Epigenetics 3:243–245

    Article  PubMed  Google Scholar 

  • Németh A, Längst G (2011) Genome organization in and around the nucleolus. Trends Genet 27:149–156

    Article  PubMed  CAS  Google Scholar 

  • Németh A, Guibert S, Tiwari VK, Ohlsson R, Langst G (2008) Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes. EMBO J 27:1255–1265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Péterfia B, Solovei I, Cremer T, Dopazo J, Längst G (2010) Initial genomics of the human nucleolus. PLoS Genet 6:e1000889. doi:10.1371/journal.pgen.1000889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Németh A, Perez-Fernandez J, Merkl P, Hamperl S, Gerber J, Griesenbeck J, Tscochner H (2013) RNA polymerase I termination: Where is the end? Biochem Biophys Acta 1829:306–317

    PubMed  Google Scholar 

  • O’Sullivan AC, Sullivan GJ, McStay B (2002) UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 22:657–668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ochs RL, Press RI (1992) Centromere autoantigens are associated with the nucleolus. Exp Cell Res 200:339–350

    Article  CAS  PubMed  Google Scholar 

  • Ochs RL, Lischwe MA, Spohn WH, Busch H (1985) Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123–133

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe RT, Henderson SC, Spector DL (1992) Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific α-satellite DNA sequences. J Cell Biol 116:1095–1110

    Article  PubMed  Google Scholar 

  • O’Sullivan JM, Sontam DM, Grierson R, Jones B (2009) Repeated elements coordinate the spatial organization of the yeast genome. Yeast 26:125–138

    Article  PubMed  CAS  Google Scholar 

  • Padeken J, Heun P (2014) Nucleolus and nuclear periphery: velcro for heterochromatin. Curr Opin Cell Biol 28:54–60

    Article  CAS  PubMed  Google Scholar 

  • Padeken J, Mendiburo MJ, Chlamydas S, Schwarz HJ, Kremmer E, Heun P (2013) The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. Mol Cell 25(50):236–249. doi:10.1016/j.molcel.2013.03.002

    Article  CAS  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    Article  CAS  PubMed  Google Scholar 

  • Pasero P, Bensimon A, Schwob E (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 16:2479–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paule M (1994) Transcription of ribosomal RNA by eukaryotic RNA polymerase I. In: Conaway RC, Conaway JW (eds) Transcription: mechanisms and regulation. Raven Press, New York, pp 83–106

    Google Scholar 

  • Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfleiderer C, Smid A, Bartsch I, Grummt I (1990) An undecamer DNA sequence directs termination of human ribosomal gene transcription. Nucl Acids Res 18:4727–4736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippsen P, Kramer RA, Davis RW (1978) Cloning of the yeast ribosomal DNA repeat unit in SstI and HindIII lambda vectors using genetic and physical size selections. J Mol Biol 123:371–386

    Article  CAS  PubMed  Google Scholar 

  • Pikaard CS, Pape LK, Henderson SL, Ryan K, Paalman MH, Lopata MA, Reeder RH, Sollner-Webb B (1990) Enhancers for RNA polymerase I in mouse ribosomal DNA. Mol Cell Biol 10:4816–4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pliss A, Koberna K, Vecerova J, Malinsky J, Masata M, Fialova M, Raska I, Berezney R (2005) Spatio-temporal dynamics at rDNA foci: global switching between DNA replication and transcription. J Cell Biochem 94:554–565

    Article  CAS  PubMed  Google Scholar 

  • Pliss A, Fritz AJ, Stojkovic B, Ding H, Mukherjee L, Bhattacharya S, Xu J, Berezney R (2015) Non-random patterns in the distribution of NOR-bearing chromosome territories in human fibroblasts: a network model of interactions. J Cell Physiol 230:427–439

    Article  CAS  PubMed  Google Scholar 

  • Pontvianne F, Blevins T, Chandrasekhara C, Mozgova I, Hassel C, Pontes OM, Tucker S, Mokros P, Muchova V, Fajkus J et al (2013) Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev 27:1545–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto JL, McStay B (2005) Nucleolar biogenesis: the first small steps. Biochem Soc Trans 33:1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Prieto JL, McStay B (2007) Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 21:2041–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto JL, McStay B (2008) Pseudo-NORs: a novel model for studying nucleoli. Biochim Biophys Acta 1783:2116–2123

    Article  CAS  PubMed  Google Scholar 

  • Puvion-Dutilleul F, Bachellerie JP, Puvion E (1991) Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma 100:395–409

    Article  CAS  PubMed  Google Scholar 

  • Rahmanzadeh R, Hüttmann G, Gerdes J, Scholzen T (2007) Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis. Cell Prolif 40:422–430

    Article  CAS  PubMed  Google Scholar 

  • Raska I (2003) Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends Cell Biol 13:517–525

    Article  CAS  PubMed  Google Scholar 

  • Raska I, Reimer G, Jarnik M, Kostrouch Z, Raska K Jr (1989) Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centers or dense fibrillar components. Biol Cell 65(1):79–82

    Article  CAS  PubMed  Google Scholar 

  • Raska I, Shaw PJ, Cmarko D (2006a) New insights into nucleolar architecture and activity. Int Rev Cytol 255:177–235

    Article  CAS  PubMed  Google Scholar 

  • Raska I, Shaw PJ, Cmarko D (2006b) Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 18:325–334

    Article  CAS  PubMed  Google Scholar 

  • Raška I, Rychter Z, Smetana K (1983a) Fibrillar centers and condensed nucleolar chromatin in resting and stimulated human lymphocytes. Zeitschrift fur mikroskopischanatomische Forschung 97(1):15–32

    Google Scholar 

  • Raška I, Armbruster BL, Frey JR, Smetana K (1983b) Analysis of ring-shaped nucleoli in serially sectioned human lymphocytes. Cell Tissue Res 234(3):707–711

    Article  PubMed  Google Scholar 

  • Raška I, Dundr M, Koberna K, Melčák I, Risueño MM, Török I (1995) Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centres or dense fibrillar components? A critical appraisal. J Struct Biol 114:1–22

    Article  PubMed  Google Scholar 

  • Rawlins DJ, Shaw PJ (1990) Localization of ribosomal and telomeric DNA sequences in intact plant nuclei by in situ hybridization and three-dimensional optical microscopy. J Microsc 157:83–89

    Article  CAS  PubMed  Google Scholar 

  • Reeder R (1992) Regulation of transcription by RNA polymerase I. In: McKnight SL, Yamamoto KR (eds) Transcriptional regulation. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, pp 315–347

    Google Scholar 

  • Reeder RH, Lang WH (1997) Terminating transcription in eukaryotes: lessons learned from RNA polymerase I. Trends Biochem Sci 22:473–477

    Article  CAS  PubMed  Google Scholar 

  • Reeder RH, Brown DD, Wellauer PK, Dawid IB (1976) Patterns of ribosomal DNA spacer lengths are inherited. J Mol Biol 105:507–516

    Article  CAS  PubMed  Google Scholar 

  • Rickards B, Flint SJ, Cole MD, LeRoy G (2007) Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol 27:937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roger B, Moisand A, Amalric F, Bouvet P (2003) Nucleolin provides a link between RNA polymerase I transcription and pre-ribosome assembly. Chromosoma 111:399–407

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol 9:509

    Article  CAS  PubMed  Google Scholar 

  • Rothstein R, Michel B, Gangloff S (2000) Replication fork pausing and recombination or “gimme a break”. Genes Dev 14:1–10

    CAS  PubMed  Google Scholar 

  • Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214:465–472

    Article  CAS  PubMed  Google Scholar 

  • Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246

    Article  CAS  PubMed  Google Scholar 

  • Ryskov AP, Kupriianova NS, Kapanadze BI, Nechvolodov KK, Pozmogova GE, Prosniak MI, Iankovskiĭ NK (1993) Frequency of various mini- and micro-satellite sequences in DNA of human chromosome 13. Genetika 29:1750–1754

    CAS  PubMed  Google Scholar 

  • Santoro R (2005) The silence of the ribosomal RNA genes. Cell Mol Life Sci 62:2067–2079

    Article  CAS  PubMed  Google Scholar 

  • Santoro R (2014) Analysis of chromatin composition of repetitive sequences: the ChIP-Chop assay. Methods Mol Biol 1094:319–328

    Article  CAS  PubMed  Google Scholar 

  • Santoro R, De Lucia F (2005) Many players, one goal: how chromatin states are inherited during cell division. Biochem Cell Biol 83:332–343

    Article  CAS  PubMed  Google Scholar 

  • Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396

    Article  CAS  PubMed  Google Scholar 

  • Santoro R, Schmitz KM, Sandoval J, Grummt I (2010) Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 11:52–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Okazaki T, Muramatsu M, Kominami R (1987) Variation among mouse ribosomal RNA genes within and between chromosomes. Mol Biol Evol 4:594–601

    CAS  PubMed  Google Scholar 

  • Savino TM, Gebrane-Younes J, De Mey J, Sibarita JB, Hernandez-Verdun D (2001) Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 153:1097–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. Review. Bioessays 12:14–21

    Article  CAS  PubMed  Google Scholar 

  • Scheer U, Zentgraf H (1982) Morphology of nucleolar chromatin in electron microscopic spread preparations. In: Busch Rothblum (ed) The cell nucleus. Academic Press, New York, p 143

    Google Scholar 

  • Scheer U, Xia B, Merkert H, Weisenberger D (1997) Looking at Christmas trees in the nucleolus. Chromosoma 105:470–480

    Article  CAS  PubMed  Google Scholar 

  • Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RS, Truong KY, Vos JM (1997) Replication initiation and elongation fork rates within a differentially expressed human multicopy locus in early S phase. Nucl Acids Res 25:4505–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw PJ, McKeown PC (2011) The structure of rDNA chromatin. In: Olson MOJ (ed) The nucleolus, protein reviews, vol 15. Springer, New York, pp 43–55

    Google Scholar 

  • Shiue CN, Berkson RG, Wright AP (2009) c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 28:1833–1842

    Article  CAS  PubMed  Google Scholar 

  • Shiue CN, Nematollahi-Mahani A, Wright AP (2014) Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture. Nucl Acids Res 42:5505–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirri V, Roussel P, Hernandez-Verdun D (1999) The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 112:3259–3268

    CAS  PubMed  Google Scholar 

  • Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smetana K, Klamová H, Mikulenková D, Pluskalová M, Hrkal Z (2006) On the nucleolar size and density in human early granulocytic progenitors, myeloblasts. Eur J Histochem 50:119–124

    CAS  PubMed  Google Scholar 

  • Smirnov E, Kalmárová M, Koberna K, Zemanová Z, Malínský J, Masata M, Cvacková Z, Michalová K, Raska I (2006) NORs and their transcription competence during the cell cycle. Folia Biol (Praha) 52(3):59–70

    CAS  Google Scholar 

  • Smirnov E, Borkovec J, Kováčik L, Svidenská S, Schröfel A, Skalníková M, Švindrych Z, Křížek P, Ovesný M, Hagen GM, Juda P, Michalová K, Cardoso MC, Cmarko D, Raška I (2014) Separation of replication and transcription domains in nucleoli. J Struct Biol 188:259–266. doi:10.1016/j.jsb.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  • Stahl A, Hartung M, Vagner-Capodano AM, Fouet C (1976) Chromosomal constitution of nucleolus-associated chromatin in man. Hum Genet 35:27–34

    Article  CAS  PubMed  Google Scholar 

  • Strohner R, Nemeth A, Nemeth A, Jansa P et al (2001) NoRC—a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 20:4892–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stults DM, Killen MW, Pierce HH, Pierce AJ (2008) Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ (2009) Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res 69:9096–9104

    Article  CAS  PubMed  Google Scholar 

  • Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 20:2867–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvester JE, Whiteman DA, Podolsky R, Pozsgay JM, Respess J, Schmickel RD (1986) The human ribosomal RNA genes: structure and organization of the complete repeating unit. Hum Genet 73:193–198

    Article  CAS  PubMed  Google Scholar 

  • Sylvester JE, Petersen R, Schmickel RD (1989) Human ribosomal DNA: novel sequence organization in a 4.5-kb region upstream from the promoter. Gene 84:193–196

    Article  CAS  PubMed  Google Scholar 

  • Sylvester JE, Gonzalez IL, Mougey EB (2003) In: Olson M (ed) The nucleolus. Landes Bioscience, Georgetown, pp 58–73

    Google Scholar 

  • Tautz D, Dover GA (1986) Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point. EMBO J 6:1267–1273

    Google Scholar 

  • Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656

    Article  CAS  PubMed  Google Scholar 

  • Thompson M, Haeusler RA, Good PD, Engelke DR (2003) Nucleolar clustering of dispersed tRNA genes. Science 302:1399–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrano V, Navascues J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, Leon J, Berciano MT, Renkawitz R et al (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly (ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119:1746–1759

    Article  CAS  PubMed  Google Scholar 

  • Tower J, Henderson SL, Dougherty KM, Wejksnora PJ, Sollner-Webb B (1989) An RNA polymerase I promoter located in the CHO and mouse ribosomal DNA spacers: functional analysis and factor and sequence requirements. Mol Cell Biol 9:1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trendelenburg MF, Puvion-Dutilleul F (1987) Visualizing active genes. In: Sommerville A, Scheer U (eds) Electron microscopy in molecular biology: a practical approach. IRL Press, Oxford, pp 101–146

    Google Scholar 

  • Trendelenburg MF, Spring H, Scheer U, Franke WW (1974) Morphology of nucleolar cistrons in a plant cell, Acetabularia mediterranea. Proc Natl Acad Sci USA 71:3626–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng H, Chou W, Wang J, Zhang X, Zhang S, Schultz RM (2008) Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS One 3:e1843. doi:10.1371/journal.pone.0001843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valentin G (1836) Repertorium für anatomie und physiologie. Verlag von Veit und Comp Berlin 1:1–293

    Google Scholar 

  • Valenzuela L, Kamakaka RT (2006) Chromatin insulators. Annu Rev Genet 40:107–138

    Article  CAS  PubMed  Google Scholar 

  • van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L, Jonkers I, Demmers J, van der Reijden M, Torrano V et al (2010) CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenet Chromat 3:17

    Article  CAS  Google Scholar 

  • van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voit R, Seiler J, Grummt I (2015) Cooperative action of Cdk1/cyclin B and SIRT1 is required for mitotic repression of rRNA synthesis. PLoS Genet 11:e1005246. doi:10.1371/journal.pgen.1005246

    Article  PubMed  PubMed Central  Google Scholar 

  • Vourc’h C, Taruscio D, Boyle AL, Ward DC (1993) Cell-cycle-dependent distribution of telomeres, centromeres and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. Exp Cell Res 205:142–151

    Article  PubMed  Google Scholar 

  • Wagner R (1835) Einige Bemerkungen und Fragen über das keimbläschen (vesicular germinativa). Müller’s Archiv Anat Physiol Wissenschaft Med 373–377

  • Weisenberger D, Scheer UA (1995) A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J Cell Biol 129:561–575

    Article  CAS  PubMed  Google Scholar 

  • Wellauer PK, Dawid IB (1977) The structural organization of rDNA in Drosophila melanogaster. Cell 10:193–212

    Article  CAS  PubMed  Google Scholar 

  • Wild MA, Gall JG (1979) An intervening sequence in the gene coding for 25S ribosomal RNA of Tetrahymena pigmentosa. Cell 16:565–573

    Article  CAS  PubMed  Google Scholar 

  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E, Choo KHA (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Ling T, Zhou Y, Feng W, Zhu Q et al (2012) The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc Natl Acad Sci 109:8161–8166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Babak T, Shendure J, Disteche CM (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20:614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Deng X, Ma W et al (2015) The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol 16:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon Y, Sanches A, Brun C, Huberman JA (1995) Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis. Mol Cell Biol 15:2482–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Feng W, Imhof A, Grummt I, Zhou Y (2007) Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol Cell 27:585–595

    Article  CAS  PubMed  Google Scholar 

  • Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13:291–298

    Article  CAS  PubMed  Google Scholar 

  • Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucl Acids Res 39:4949–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentner GE, Balow SA, Scacheri PC (2014) Genomic characterization of the mouse ribosomal DNA locus. G3 4:243–254. doi:10.1534/g3.113.009290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Hemmerich P, Grosse F (2004) Nucleolar localization of the human telomeric repeat binding factor 2 (TRF2). J Cell Sci 117:3935–3945

    Article  CAS  PubMed  Google Scholar 

  • Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129:693–706

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Grummt I (2005) The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 15:1434–1438

    Article  CAS  PubMed  Google Scholar 

  • Zillner K, Filarsky M, Rachow K, Weinberger M, Längst G, Németh A (2013) Large-scale organization of ribosomal DNA chromatin is regulated by Tip5. Nucl Acids Res 41:5251–5262. doi:10.1093/nar/gkt218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zillner K, Komatsu J, Filarsky K, Kalepu R, Bensimon A, Németh A (2015) Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics 7:363–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Czech Republic (P302/12/1885, P302/12/G157, and 13-12317J), by Charles University in Prague (PRVOUK P27/LF1/1 and UNCE 204022), and by OPPK (CZ.2.16/3.1.00/24010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, E., Cmarko, D., Mazel, T. et al. Nucleolar DNA: the host and the guests. Histochem Cell Biol 145, 359–372 (2016). https://doi.org/10.1007/s00418-016-1407-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1407-x

Keywords

Navigation