Skip to main content
Log in

Calcium transport in rat small intestine in vitro and in vivo

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Intestinal calcium (Ca) transport was studied in the rat jejunum by the in vitro perfusion technique of Fisher and Parsons and in the tied loop in vivo. Mucosal uptake and absorption of Ca was examined under the following conditions: rising intraluminal Ca-concentrations (0.5–128 meq/l); inhibition of energy dependent metabolism (2,4-dinitrophenol, N2, low temperature); net water flow, out of or into the intestinal lumen; addition of strontium (Sr); pretreatment with low Ca-diet and with 6-methyl-prednisolone.

The concentration-dependent Ca absorption curve rose steeply at low Ca-concentrations but changed to a slowly rising straight line above 16 meq/l Ca++. In contrast, Ca uptake into the intestinal wall was directly related to Ca concentration, was linear from the beginning and paralleled the straight part of the absorption curve.

Ca absorption was decreased by inhibition of energy dependent metabolism, addition of Sr and pretreatment with prednisolone. Pretreatment with low Ca diet increased Ca absorption and direction of net water flow (“solvent drag”) had no effect on it.

Mucosal uptake of Ca was similar to Ca absorption except that metabolic inhibition increased Ca uptake but decreased Ca absorption.

These results are compatible with the concept of a passive mucosal uptake and of an active absorption of Ca at low intraluminal Ca concentrations with additional passive component at high Ca concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avioli, L. V., Birge, S. J., Lee, S. W.: Effects of prednisone on vitamin D metabolism in man. J. clin. Endocr. 28, 1341–1346 (1968).

    Google Scholar 

  2. Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a scintillation counter. Analyt. Biochem. 1, 279–285 (1960).

    Google Scholar 

  3. Caspary, W. F.: Personal communication.

  4. Corrodino, R. A., Wasserman, R. H.: Strontium inhibition of vitamin D3-induced calcium-binding protein (CaBPr) and calcium absorption in chick intestine. Proc. Soc. exp. Biol. (N.Y.) 133, 960–963 (1970).

    Google Scholar 

  5. Cramer, C. F., Dueck, J.: In vivo transport of calcium from healed Thiry-Vella fistulas in dogs. Amer. J. Physiol. 202, 161–164 (1962).

    Google Scholar 

  6. Danielli, J. F.: In: Recent developments in cell physiology. J. A. Kitching, ed. New York-London: Academic Press 1954.

    Google Scholar 

  7. Dumont, P. H., Curran, P. F., Solomon, A. K.: Calcium and strontium in rat small intestine, their fluxes and their effect on water flux. J. gen. Physiol. 43, 1119–1136 (1960).

    Google Scholar 

  8. Ewe, K.: Intestinale Calcium-Resorption und ihre Störungen bei Osteoporose, M. Cushing und Hypoparathyreoidismus. Klinische und tierexperimentelle Untersuchungen. Habilitationsschrift, Mainz 1969.

  9. Finkelstein, J. D., Schachter, D.: Active transport of calcium by intestine: effects of hypophysectomy and growth hormone. Amer. J. Physiol. 203, 873–880 (1962).

    Google Scholar 

  10. Fisher, R. B., Parsons, D. S.: A preparation of surviving small intestine for the study of absorption. J. Physiol. (Lond.) 110, 36–46 (1949).

    Google Scholar 

  11. Förster, H., Mehnert, H.: Experimentelle Untersuchungen zur aktiven Resorption von Zuckern am lebenden Tier. Klin. Wschr. 43, 834–839 (1965).

    Google Scholar 

  12. Forth, W., Rummel, W.: Wirkung von Herzglykosiden auf Calcium-, Natrium-, Wasser- und Glukosetransport am isolierten Dünndarm. Helv. physiol. pharmacol. Acta 25, 8–23 (1967).

    Google Scholar 

  13. Harmeyer, J., De Luca, H. F.: Calcium-binding protein and calcium absorption after vitamin D-administration. Arch. Biochem. 133, 247–254 (1969).

    Google Scholar 

  14. Harrison, H. E., Harrison, H. C.: Transfer of Ca45 across intestinal wall in vitro in relation to action of vitamin D and cortisol. Amer. J. Physiol. 199, 256–271 (1960).

    Google Scholar 

  15. ——: Vitamin D and permeability of intestinal mucosa to calcium. Amer. J. Physiol. 208, 370–374 (1965).

    Google Scholar 

  16. Helbock, H. J., Forte, J. G., Saltman, P.: The mechanism of calcium transport by the rat intestine. Biochim. biophys. Acta (Amst.) 126, 81–93 (1966).

    Google Scholar 

  17. Holdsworth, E. S.: Vitamin D3 and calcium absorption in the chick. Biochem. J. 96, 475–483 (1965).

    Google Scholar 

  18. Jakobi, H. W., Rummel, W., Pfleger, K.: Die Beziehungen zwischen Phosphatdurchtritt und Glukoseresorption. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 234, 404–413 (1958).

    Google Scholar 

  19. Kimberg, D. V.: Effects of vitamin D and steroid hormones on the active transport of calcium by intestine. New Engl. J. Med. 280, 1396–1405 (1969).

    Google Scholar 

  20. —, Schachter, D., Schenker, H.: Active transport of calcium intestine: effects of dietary calcium. Amer. J. Physiol. 200, 1256–1262 (1961).

    Google Scholar 

  21. Krawitt, E. L., Schedl, H. P.: In vivo calcium transport by rat small intestine. Amer. J. Physiol. 214, 232–236 (1968).

    Google Scholar 

  22. Malm, O. J.: Adaptation to alterations in calcium intake. In: R. H. Wasserman, ed.: The transfer of calcium and strontium across biological membranes, pp. 143–174. New York-London: Academic Press 1963.

    Google Scholar 

  23. Martin, D. L., De Luca, H. F.: Calciumtransport and the role of vitamin D. Arch. Biochem. 134, 139–148 (1969).

    Google Scholar 

  24. Nicolaysen, R., Eeg-Larson, N., Malm, O. J.: Physiology of calcium metabolism. Physiol. Rev. 33, 424–444 (1953).

    Google Scholar 

  25. Pfleger, K.: Persönliche Mitteilung.

  26. —, Jacobi, H., Rummel, W.: Zur Frage der Bedeutung der Laktatakkumulation für die Glukoseresorption. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 234, 400–403 (1958).

    Google Scholar 

  27. Riklis, E., Quastel, J. H.: Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Canad. J. Biochem. 36, 347–362 (1958).

    Google Scholar 

  28. Sanford, P. A.: Inhibition of intestinal absorption. Brit. med. Bull. 23, 270–274 (1967).

    Google Scholar 

  29. Schachter, D.: Vitamin D and the active transport of calcium by small intestine. In: E. H. Wasserman, ed.: The transfer of calcium and strontium across biological membranes, pp. 197–210. New York-London: Academic Press 1963.

    Google Scholar 

  30. — Dowdle, E., Schenker, H.: Accumulation of Ca45 by slices of small intestine. Amer. J. Physiol. 198, 275–279 (1960).

    Google Scholar 

  31. —, Kimberg, D. V., Schenker, H.: Aktive transport of calcium by intestine: action and bioassay of vitamin D. Amer. J. Physiol. 200, 1263–1271 (1961).

    Google Scholar 

  32. —, Kowarsky, S., Finkelstein, J. D., Wang Ma, R. I.: Tissue concentration differences during active transport of calcium by intestine. Amer. J. Physiol. 211, 1131–1136 (1966).

    Google Scholar 

  33. —, Rosen, S. M.: Active transport of Ca45 by the small intestine and its dependence on vitamin D. Amer. J. Physiol. 198, 275–279 (1960).

    Google Scholar 

  34. Taylor, A. N.: PhD-Thesis Cornell Univ. Ithaca, New York 1969.

  35. Urban, E., Schedl, H. P.: Vitamin D, tissue calcium and calcium transport in the in vivo rat small intestine. Amer. J. Physiol. 219, 944–951 (1970).

    Google Scholar 

  36. Walling, M. W., Rothman, S. S.: Kinetic evidence for active carrier-mediated calcium transport across the small intestine. Fed. Proc. 27, 386 (1968).

    Google Scholar 

  37. Wasserman, R. H.: Vitamin D and the absorption of calcium and strontium in vivo. In: R. H. Wasserman, ed.: The transfer of calcium and strontium across biological membranes, pp. 211–228. New York-London: Academic Press 1963.

    Google Scholar 

  38. —, Kallfelz, F. A.: Vitamin D3 and the unidirectional fluxes of calcium across rachitic chick duodenum. Amer. J. Physiol. 203, 221–224 (1962).

    Google Scholar 

  39. ——, Comar, C. L.: Active transport of calcium by rat duodenum in vivo. Science 133, 883–8834 (1961).

    Google Scholar 

  40. — Taylor, A. N.: Vitamin D3-induced calcium binding protein in chick intestinal mucosa. Science 152, 791–793 (1966).

    Google Scholar 

  41. ——: Vitamin D-dependent calcium-binding protein. J. biol. Chem. 234, 3987–3993 (1968).

    Google Scholar 

  42. Wasserman, R. H., Taylor, A. N. Some aspects of the intestinal absorption of calcium with special reference to Vitamin D. In: C. L. Comar and F. Bronner, ed.: Mineral metabolism, Vol. III, Chap. 5, pp. 321–403.

  43. Whebey, M. S., Jones, L. G., Crosby, W. H.: Studies on iron absorption. Intestinal regulatory mechanism. J. clin. Invest. 43, 1433–1442 (1964).

    Google Scholar 

  44. Wilbrandt, W., Rosenberg, T.: The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev. 13, 109–183 (1961).

    Google Scholar 

  45. Wilson, T. H.: Intestinal absorption, pp. 43. Philadelphia-London: W. B. Saunders 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewe, K. Calcium transport in rat small intestine in vitro and in vivo. Naunyn-Schmiedeberg's Arch. Pharmacol. 273, 352–365 (1972). https://doi.org/10.1007/BF00499669

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00499669

Key words

Navigation