Skip to main content
Log in

Esterase

XVIII. Biochemical and histochemical investigations of the subcellular location of the non specific esterase

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

It is well known that the non specific esterase occurs, during cell particle fractionation, up to 80% and more bound to particles, whereas 70–80% of the same esterase goes out of cryostate sections into aqueous solution. This holds for liver as well as for kidney. In the present investigation it is endeavored to solve these contradictory findings. The specific esterase activity of microsomes I, which are prepared from liver in the conventional way, is 10 times higher than that of the homogenate. Opposed to this, the specific activity of microsomes II, prepared from liver cryostate sections, is only 40% of that in microsomes I. It seems that esterase which does not originate from the microsomal precursors becomes irreversibly attached to microsomes during tissue homogenisation. During this procedure, the diffusion of esterase into the medium competes with the process of enzyme attachment, both phenomena occurring within seconds. Electron microscopical enzyme demonstration reveals that the esterase changes its location if cells are mechanically injured. Thus the predominately microsomal location of esterase must be regarded as an artificial finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrow, P. C., Holt, S. J.: Differences in distribution of esterase between cell fractions of rat liver homogenates prepared in various media. Biochem. J. 125, 545–555 (1971)

    Google Scholar 

  • Benöhr, H. C., Krisch, K.: Carboxylesterase aus Rinderlebermikrosomen, I. Z. physiol. Chem. 348, 1102–1114 (1967)

    Google Scholar 

  • Biesold, D., Teichgräber, P.: Activation and solubilisation of particle—bound hexokinase in rat brain. Biochem. J. 103, 13c (1967)

    Google Scholar 

  • Bowers, W. E., De Duve, C.: Lysosomes in lymphoid tissue. II. Intracellular distribution of acid hydrolases. J. Cell Biol. 32, 339–348 (1967)

    Google Scholar 

  • Carruthers, C., Woernley, D. L., Baumler, A., Lilga, K.: The distribution of cytochrome oxidase, glucose-6-phosphate and esterase in the fractions of liver cells prepared from glycerol homogenates. Arch. Biochem. Biophys. 87, 266–272 (1960)

    Google Scholar 

  • Carruthers, C., Baumler, A.: Esterase distribution in mouse liver. Arch. Biochem. Biophys. 94, 351–357 (1961)

    Google Scholar 

  • Deimling, O. v., Madreiter, H.: Esterase II. A new method for the electron microscopical demonstration of a non-specific esterase in animal tissues. Histochemie 29, 83–96 (1972)

    Google Scholar 

  • Deimling, O. v., Wienker, Th., Böcking A.: Esterasen VII. Zur Unterscheidung von O- und S-Acyl-Hydrolaseaktivität in Mäuseorganen. Hoppe-Seylers Z. physiol. Chem. 354, 1439–1446 (1973)

    Google Scholar 

  • Eränkö, O., Härkönen, M., Kokko, A., Räisänen, L.: J. Histochem. Cytochem. 12, 570–581 (1964)

    Google Scholar 

  • Fonnum, F.: Choline acyltransferase binding to and release from membranes. Biochem. J. 109, 389–398 (1968)

    Google Scholar 

  • Fraser, M. J., Schulman, J. H.: Activity of catalase—lipid complexes at oil/water interfaces. Dics. Faraday Soc. 20, 44–54 (1955)

    Google Scholar 

  • Hannibal, M. J., Nachlas, M. M.: Further studies on the lyo and desmo components of several hydrolytic enzymes and their histochemical significance. J. biophys. biochem. Cytol. 5, 279–288 (1959)

    Google Scholar 

  • Hayase, K., Tappel, A. L.: Microsomal esterase of rat liver. J. biol. Chem. 244, 2269–2274 (1969)

    Google Scholar 

  • Holt, S. J.: Some observations on the occurrence and nature of esterases in lysosomes. Ciba Found. Symp.: “Lysosomes”, p. 114–125 (1963)

  • Holt, S. J.: Colloqium on “Intracellular localization of enzymes” held in Louvain, Belgium, June 17–18, 1960. Reported by De Duve, C., Nature (Lond.) 187, 836 (1960)

    Google Scholar 

  • Huggins, C., Lapides J.: Chromogenic substrates. IV. Acyl esters of p-nitrophenol as substrates for the colorimetric determination of esterase. J. biol. Chem. 170, 467–482 (1947)

    Google Scholar 

  • Hultin, H. O., Westort, C.: Factors affecting the distribution of lactate dehydrogenase between particulate and nonparticulate fractions of homogenized skeletal muscle. Arch. Biochem. Biophys. 117, 523–533 (1966)

    Google Scholar 

  • Kuff, E.: The distribution of fumarase activity in mouse liver homogenates. J. biol. Chem. 207, 361–365 (1954)

    Google Scholar 

  • Ljungquist, A., Augustinsson, K. B.: Purification and properties of two carboxylesterases from rat-liver microsomes. Europ. J. Biochem. 23, 303–313 (1971)

    Google Scholar 

  • Markert, C. L., Hunter, R. L.: The distribution of esterase in mouse tissues. J. Histochem. Cytochem. 7, 42–49 (1959)

    Google Scholar 

  • Maurer, R.: Disk-Elektrophorese. Theorie und Praxis der diskontinuierlichen Polyacrylamidgel-Elektrophorese. Berlin: De Gruyter 1968

    Google Scholar 

  • Nachlas, M., Prinn, W., Seligman, A.: Quantitative estimation of lyo- and desmoenzymes in tissue sections with and without fixation. J. biophys. biochem. Cytol. 2, 487–502 (1956)

    Google Scholar 

  • Paigen, K., Wenner, C. E.: The intracellular location of the glycolytic dehydrogenase in liver and hepatoma. Arch. Biochem. Biophys. 97, 213–216 (1962)

    Google Scholar 

  • Palade, G. E., Siekevitz, P.: Liver microsomes. An integrated morphological and biochemical study. J. biophys. biochem. Cytol. 2, 171–198 (1956)

    Google Scholar 

  • Riebschläger, M., Wienker, Th., Deimling, O. v.: Esterase XIII. Elutionsgeschwindigkeit und Elutionsprofil der unspezifischen Esterase von Kryostatschnitten der Mäuseniere. Histochemistry 39, 251–260 (1974)

    Google Scholar 

  • Rieder, H. P.: Eine neue Modifikation der Cu-Folin-Methode zur Bestimmung des Totalproteins im Liquor cerebrospinalis. Klin. Wschr. 44, 1036–1040 (1966)

    Google Scholar 

  • Rosenthal, O., Gottlieb, B., Gorry, J. D., Vars, H. M.: Influence of cations on the intracellular distribution of rat liver arginase. J. biol. Chem. 223, 469–478 (1956)

    Google Scholar 

  • Schulze, H.-U., Pönninghaus, J. M., Staudinger, H.: Untersuchungen über die Verteilung von Enzymproteinen in den endoplasmatischen Membranen der Leberzelle. II. Hoppe Seylers Z. physiol. Chem. 353, 1195–1204 (1972)

    Google Scholar 

  • Sellinger, O. Z., De Balbian Verster, F.: An esterase of rat cerebral cortex acting on o-nitrophenyl acetate: method of assay, properties, and intracellular distribution. Anal. Biochem. 3, 479–488 (1962)

    Google Scholar 

  • Shibko, S., Tappel, A. L.: Distribution of esterase in rat liver. Arch. Biochem. Biophys. 106, 259–266 (1964)

    Google Scholar 

  • Staeudinger, M., Deimling, O. v., Großarth, C.: Esterase VIII. Histochemische, elektrophoretische und quantitative Untersuchungen zum Einfluß von Phenobarbital auf die Leberesterase der Maus. Histochemie 34, 107–116 (1973)

    Google Scholar 

  • Underhay, E., Holt, S. J., Beaufay, H., De Duve, C.: Intracellular localization of esterase in rat liver. J. biophys. biochem. Cytol. 2, 635–637 (1956)

    Google Scholar 

  • Weinbach, E. C.: A procedure for isolating stable mitochondria from rat liver and kidney. Anal. Biochem. 2, 335–343 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böcking, A., Großarth, C. & von Deimling, O. Esterase. Histochemistry 42, 359–375 (1974). https://doi.org/10.1007/BF00492684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00492684

Keywords

Navigation