Skip to main content
Log in

The role of precursors in the structure of SiO2-Al2O3 sols and gels by the sol-gel process

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Binary sols and gels of SiO2-Al2O3 were prepared using tetraethyl orthosilicate and each of four aluminum compounds; aluminum di (sec-butoxide) ethylacetoacetic ester chelate (AC), aluminum nitrate nonahydrate (AN), aluminum formoacetate (AF), and boehmite sol (BS) made from aluminum i-propoxide. The structure and the evolution of the Si-O-Al bonds in SiO2-Al2O3 sols and gels were investigated by 27Al nuclear magnetic resonance (NMR), Infrared absorption spectra, DTA, and X-ray diffraction. The formation of Si-O-Al bonds differs depending on the aluminum compounds used as raw materials. The ratio of Al(IV) to {Al(IV) + Al(VI)} is related to the microstructural homogeneity of the gels. When AC is used as a raw material, the Si-O-Al bonds are formed in the sol state and resultant gel shows good microstructural homogeneity. In case of AN, the Si-O-Al bonds are not formed either in the sol or the wet gel state. The bonds are formed by drying the gel before heat-treatment temperature reaches 300 ∼ 400°C, resulting in good microstructural homogeneous gel. When AF is used, the Si-O-Al bonds are formed in the sol state but the ratio of Al(IV) to {Al(IV) + Al(VI)} is lower than when using AC. Microstructural homogeneity of the gel is ranked between AC or AN and BS. Using BS, the Si-O-Al bonds are not formed in the sol solution, and the change in the coordination number of the gel is similar to that of boehmite gel. The Microstructural homogeneity of the gel is the worst among the BS gels, which were prepared by using the four aluminum raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.E. Yoldas, Am. Ceram. Bull 59, 479 (1980).

    Google Scholar 

  2. S. Sakka and K. Kamiya, J. Non-Cryst. Solids 42, 403(1980).

    Google Scholar 

  3. T. Tsuchiya, M. Fukuoka, T. Sei, and J.D. Mackenzie, Seramikku-ronnbunnshi 97, 224 (1989).

    Google Scholar 

  4. A. Yasumori, M. Iwasaki, H. Kawazoe, M. Yamane, and Y. Nakamura, Phy. Chem. Glasses 31, 1(1990).

    Google Scholar 

  5. A.D. Irwin, J.S. Holmgren, J. Jones, J. Mat. Sci. 23, 2098 (1988).

    Google Scholar 

  6. S. Komarneni, R. Roy, C.A. Fyfe, and G.J. Kennedy, J. Am. Ceram. Soc. 68, C-243 (1985).

    Google Scholar 

  7. S.L. Hietala, D.M. Smith, C.J. Brinker, A.J. Hurd, A.H. Carim, and N. Dando, J. Am. Ceram. Soc. 73, 2815 (1990).

    Google Scholar 

  8. S. Prabakar, K.J. Rao, and C.N.R. Rao, J. Mater. Res. 6, 592 (1991).

    Google Scholar 

  9. A. Yasumori, M. Iwasaki, H. Kawazoe, M. Yamane, Y. Nakamura, Proceedings of the 28th Symposium on Glass, the Glass Division of Ceramic Society of Japan, Tokyo, Nov. 16–17, (1987) 85.

  10. J. Jonas, A.D. Irwin, and J.S. Holmgren in Ultra Structure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988) p. 303.

    Google Scholar 

  11. S. Komarneni, R. Roy, C.A. Fyfe, G.J. Kennedy, and H. Strobl, J. Am. Ceram. Soc. 69, C-42(1986).

    Google Scholar 

  12. J.M. Thomas, J. Klinowski, P.A. Wright, and R. Roy, Angew. Chem. Int. Ed. Engl. 22, 614, (1983).

    Google Scholar 

  13. J.C. Pouxiel and J.P. Boilot, in Ultra Structure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988) p. 197.

    Google Scholar 

  14. F. Babonneau, L. Coury, and J. Livage, J. Non-Cryst. Solids 121, 153 (1990).

    Google Scholar 

  15. F. Hatakeyama and T. Maekawa, Seramikku-ronnbunnshi, 100, 163 (1992).

    Google Scholar 

  16. T. Nishio, Y. Fujiki, Seramikku-ronnbunnshi, 99, 654 (1991).

    Google Scholar 

  17. T. Fukui, C. Sakurai, M. Okuyama, and M. Sasaki, Proceedings of Fall Meeting The Ceramic Society of Japan, Nagaoka, Oct. 2–4 (1989) 270.

  18. B.E. Yoldas, J. Mat. Sci. 11, 465 (1976).

    Google Scholar 

  19. R. Dupree, M.H. Lewis, and M.E. Smith, J. Appl. Cryst. 21, 109 (1988).

    Google Scholar 

  20. D. Mueller, D. Hoebbel, and W. Gessher, Chem. Phys. Lett. 84, 25 (1981).

    Google Scholar 

  21. T. Kumazawa, S. Kanzaki, J. Asaumi, O. Abe, H. Tabata, and Yogyo-kyokai-shi 94, 485 (1986).

    Google Scholar 

  22. H. Suzuki, Y. Tomokiyo, Y. Toyama, and H. Saito, Seramikku-ronnbunnshi, 96, 67 (1988).

    Google Scholar 

  23. Y. Hirata, H. Minamizono, K. Shimada, Yogyo-kyokai-shi 93, 46 (1985).

    Google Scholar 

  24. B.E. Yoldas and D.P. Pantlow, J. Mater.Sci. 23, 1995 (1988).

    Google Scholar 

  25. D.W. Hoffman, R. Roy, and S. Komarneni, J. Am. Ceram. Soc. 67, 468 (1984).

    Google Scholar 

  26. A.K. Chakravorty and D.K. Ghosh, J. Am. Ceram. Soc. 69, C-202 (1986).

    Google Scholar 

  27. J.C. Huling and G.L. Messing, J. Am. Ceram. Soc. 72, 1725 (1989).

    Google Scholar 

  28. D.X. Li and W.J. Thomson, J. Mater. Res. 5, 1963 (1989).

    Google Scholar 

  29. N.P. Bansal, J. Am. Ceram. Soc. 73, 2647 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuoka, M., Onoda, Y., Inoue, S. et al. The role of precursors in the structure of SiO2-Al2O3 sols and gels by the sol-gel process. J Sol-Gel Sci Technol 1, 47–56 (1993). https://doi.org/10.1007/BF00486428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486428

Key words

Navigation