Skip to main content
Log in

Genetic structure of a naturally regenerating Scots pine population tolerant for high pollution near a zinc smelter

  • Special Section
  • Genetic Aspects of Air Pollution
  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A comparison of the genetic structure for a group of 10 to 15 year old Scots pine trees originating from natural regeneration in an extremely polluted area with the genetic structure of 9 reference populations from the same geographical region but only slightly polluted, have demonstrated differences in alleles and genotypes frequencies. The observed heterozygosity (Ho) was lower by 12% for the group of trees from the polluted area. Fixation index (F) exhibited significant excess of homozygotes (F=0.15) in the group of tolerant trees. Average numbers of alleles per locus was higher by 8% in the group of trees from the polluted site. This differs from results from areas with the novel forest decline. Based on the differences in allele and genotype frequencies one might concluded that some of the alleles have a selective disadvantage or a selective advantage in the group of trees in the studied polluted area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergmann, F. and Scholz, F.: 1984, ‘Effects of Selection Pressure by SO2 Pollution on Genetic Structure of Norway spurce (Picea abies) in LectureNotes in Biomatematics’ in H.-R. Gregorius (ed.), Population Genetics in Forestry, Springer-Verlag, Berlin, Heidelberg, pp. 267–275.

    Google Scholar 

  • Bergmann, F. and Scholz, F.: 1987, Silvae Genetica 36, 80.

    Google Scholar 

  • Bergmann, F. and Scholz, F.: 1989, ‘Selection Effects of Air Pollution in Norway spurce (Picea abies) populations’, in F. Scholz, H.-R. Gregorius, and D. Rudin (eds.), Genetic Effects of Air Pollutants in Forest Tree Populations. Springer-Verlag, Berlin, Heidelberg, pp. 145–160.

    Google Scholar 

  • Geburek, Th., Scholz, F., Knabe, W., and Vornweg, A. L. 1987, Silvae Genetica 36, 49.

    Google Scholar 

  • Greń, J.: 1972, Modele i badania statystyki matematycznej, PWN, Warszawa.

    Google Scholar 

  • Gullberg, U., Yazdani, R., and Rudin, D.: 1982, Silva Fennica 16, 205.

    Google Scholar 

  • Hedrick, P. W.: 1974, Evolution 29, 362.

    Article  Google Scholar 

  • Jain, S. K. and Workman, P. L.: 1967, Nature 214, 674.

    Article  CAS  Google Scholar 

  • Kahler, A. L., Allard, R. W., Krzakowa, M., Wherhan, C. F., and Neve, E.: 1980, TAG 56, 31.

    CAS  Google Scholar 

  • Mejnartowicz, L.: 1983, Genetica Polonica 24, 41.

    CAS  Google Scholar 

  • Mejnartowicz, L. and Palowski, B.: 1989, ‘Studies of Scots Pine Populations in Polluted and Clean Areas’, in F. Scholz, H.-R. Gregorius, and D. Rudin (eds.) Genetic Effects of Air Pollutants in Forest Tree Populations, Springer-Verlag, Berlin, Heidelberg, pp. 115–125.

    Chapter  Google Scholar 

  • Müller-Starck, G.: 1985, Silvae Genetica 34, 241.

    Google Scholar 

  • Müller-Starck, G.: 1989, ‘Genetic Implications of Environmental Stress in Adult Forest Stands of Fagus sylvatica L.’, in F. Scholz, H.-R. Gregorius, and D. Rudin (eds.), Genetic Effects of Air Pollutants in Forest Tree Populations, Springer-Verlag, Berlin, Heidelberg, pp. 127–142.

    Chapter  Google Scholar 

  • Nei, M. and Roychoudhry, A. K.: 1974, Genetics 76, 379.

    CAS  Google Scholar 

  • Prus-Głowacki, W. and Nowak-Bzowy, R.: 1989, Silvae Genetica 38, 55.

    Google Scholar 

  • Prus-Głowacki, W. and Godzik, S.: 1991, Silvae Genetica 40, 184.

    Google Scholar 

  • Rudin, D. and Ekberg, T.: 1978, Silvae Genetica 27, 1.

    CAS  Google Scholar 

  • Scholz, F.: 1990, ‘Importance of the Genetic Structure in Tree Species for Forest Ecosystems Under the Influence of Air Pollutants’, in B. Ulrich (ed.), Proc. International Congress on Forest Decline Research: state of Knowledge and Perspectives, Friedrichshafen 2–6.10.1989, pp. 479–497.

  • Scholz, F. and Bergmann, F.: 1984, Silvae Genetica 33, 238.

    Google Scholar 

  • Srivastava, H. S. and Singh, 1987, Phytochemistry 26, 597.

    Article  CAS  Google Scholar 

  • Szmidt, A. and Yazdani, R.: 1984, Arboretum Kórnickie 29, 63.

    CAS  Google Scholar 

  • Tomsett, A. B. and Thurman, D. A.: 1988, Plant, Cell and Environment 11, 383.

    Article  CAS  Google Scholar 

  • Venne, H., Scholz, F., and Vornweg, A.: 1989, ‘Effects of Air Pollutants on Reproductive Processes of Poplar (Populus ssp.) and Scots pine (Pinus sylvestris L.)’ in F. Scholz, H.-R. Gregorius, and D. Rudin (eds.), Genetic Effects of Air Pollutants in Forest Tree Populations, Springer -Verlag, Berlin, Heidelberg, pp. 89–103.

    Chapter  Google Scholar 

  • Yazdani, R. and Rudin, D.: 1982, Hereditas 96, 191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prus-Głowacki, W., Nowak-Bzowy, R. Genetic structure of a naturally regenerating Scots pine population tolerant for high pollution near a zinc smelter. Water Air Soil Pollut 62, 249–259 (1992). https://doi.org/10.1007/BF00480259

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00480259

Keywords

Navigation