Skip to main content
Log in

Genetic Variability in Pinus sylvestris, Picea obovata, and Abies sibirica Populations and in Felling in the Southern Taiga of Central Siberia

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The variability of polymorphic enzyme loci was studied in 1180 undergrowth individuals in four Pinus sylvestris L., Picea obovata Ledeb., and Abies sibirica Ledeb. populations growing in the southern taiga of Central Siberia in the regions covered by felling of different intensity and in the control (including in 15 Scots pine samples, 13 Siberian spruce samples, and 16 Siberian fir samples). The results of the comparative analysis of data confirm a significant reduction in genetic diversity in the young generation of trees of three coniferous species at the place of high-intensity clear large-scale and selective felling (by 8–30% in the number of alleles and level of polymorphism, by 14–75% in the number of rare alleles). It was noted that the gene pools of populations of dark coniferous species are more sensitive to anthropogenic effects as compared with light coniferous species (Scots pine). The features of genetic variability of isozymes in Siberian fir populations indicate a significant loss of intraspecific allelic diversity of enzyme loci by the species, which requires a special approach to the analysis of the effect of forest management on populations of this species and preservation of its genetic diversity. Of the used indices of genetic variability, rare alleles of polymorphic loci in general (and especially the alleles of low polymorphic loci) are the most informative for the purposes of genetic monitoring of coniferous forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Isaev, A.S. and Korovin, G.N., Forests as a national treasure of Russia, Contemp. Probl. Ecol., 2014, vol. 6, no. 1, pp. 677—682. https://doi.org/10.1134/S1995425513070056

    Article  Google Scholar 

  2. Pobedinskii, A.V., Rubki i vozobnovlenie v taezhnykh lesakh SSSR (Clearcutting and Renewal in the Taiga Forests of the USSR), Moscow: Lesnaya Promyshlennost’, 1973.

  3. Buzykin, A.I. and Pshenichnikova, L.S., The resource and ecological potential of forests of the Krasnoyarsk region, Khvoinye Boreal’noi Zony, 2008, vol. 25, nos. 3—4, pp. 327—332.

    Google Scholar 

  4. Altukhov, Yu.P., The dynamics of the population gene pools under anthropogenic influences, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2004, vol. 8, no. 2, pp. 40—59.

    Google Scholar 

  5. Fussi, B., Westergren, M., Aravanopoulos, F., et al., Forest genetic monitoring: an overview of concepts and definitions, Environ. Monit. Assess., 2016, vol. 188, p. 493. https://doi.org/10.1007/s10661-016-5489-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mamaev, S.A., Semerikov, L.F., and Makhnev, A.K., On a population-based approach to forestry, Lesovedenie, 1988, no. 1, pp. 3—9.

  7. Iroshnikov, A.I., Mamaev, S.A., and Nekrasov, V.I., Gene pool of forest tree species in the USSR (differentiation, use, conservation, monitoring), Lesnaya genetika, selektsiya i fiziologiya drevesnykh rastenii (Forest Genetics, Breeding and Physiology of Woody Plants) (Proc. Int. Sympos., Voronezh, September 25—30, 1989), Moscow: Nauchno-Issled. Inst. Lesn. Genet. Sel., 1989, pp. 9—16.

  8. Altukhov, Yu.P., Intraspecific genetic diversity: monitoring and conservation, Genetica (Moscow), 1995, vol. 31, no. 10, pp. 1331—1357.

    Google Scholar 

  9. Goncharenko, G.G., Drobyshevskaya, V.V., Silin, A.E., et al., Genetic resources of the pines occurring in Russia and neighboring states, Dokl. Biol. Sci., 1996, vol. 346, no. 3, pp. 419—423.

    Google Scholar 

  10. Avrov, F.D., Genetic sustainability of forests, Lesn. Khoz., 2001, no. 3, pp. 46—47.

  11. Milyutin, L.I., Genetic and evolutionary bases of forest ecosystem sustainability, Lesovedenie, 2003, no. 1, pp. 16—20.

  12. Politov, D.V., Population genetics and evolutionary relationships of pine species (family Pinaceae) in Northern Eurasia, Extended Abstract of Doctoral Dissertation, Inst. Obsh. Genet. im N.I. Vavilova Ross. Akad. Nauk, Moscow, 2007.

  13. Vidyakin, A.I., Phenetics, population structure and gene pool conservation in Scots pine (Pinus sylvestris L.), Khvoinye Boreal’noi Zony, 2007, nos. 2—3, pp. 159—166.

  14. Tarakanov, V.V., Achievements and errors in conservation and rational use of forest genetic resources in Siberia, Lesn. Khoz., 2009, no. 5, pp. 10—12.

  15. Tikhonova, I.V. and Koretz, M.A., A study of adaptive norm of reaction for populations of main forest-forming conifer species of Middle Siberia using indirect data, Zh. Obshch. Biol., 2019, vol. 80, no. 1, pp. 68—80. https://doi.org/10.1134/S0044459619010068

    Article  Google Scholar 

  16. Avrov, F.D., Ecological and genetic bases of the population stability and plantation cultivation of larch in Siberia, Extended Abstract of Doctoral Dissertation, Institut Ekologii Prirodnykh Kompleksov, Krasnoyarsk, 1998.

  17. Hamrick, J.L. and Godt, M.J.W., Allozyme diversity in plant species, in Plant Population Genetics, Breeding and Genetic Resources, Sunderland, Mass: Sinauer, 1990, pp. 43—63.

    Google Scholar 

  18. Zhivotovsky, L.A., Populyatsionnaya biometriya (Population Biometry), Nauka, Moscow, 1991.

  19. Kravchenko, A.N., Larionova, A.Ya., and Ekart, A.K., Genetic polymorphism of Siberian spruce Picea obovata (Pinaceae) populations in the Asian part of distribution area, Vestn. Sev.-Vost. Nauchn. Tsentra Dal’nevost. Otd. Ross. Akad. Nauk, 2013, no. 2, pp. 74—95.

  20. Ekart, A.K., Larionova, A.Ya., Zatsepina, K.G., et al., Genetic diversity and differentiation of Scots pine in Southern Siberia and Mongolia, Sib. Ekol. Zh., 2014, no. 1, pp. 69—78. https://doi.org/10.1134/S1995425514010041

  21. Gorelick, N., Hancher, M., Dixonet, et al., Google Earth Engine: planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 2017, vol. 202, pp. 18—27. https://earthengine.google.com/timelapse/.

    Google Scholar 

  22. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283—292.

    Article  Google Scholar 

  23. Peakall, R. and Smouse, P.E., GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288—295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  24. Rousset, F., GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux, Mol. Ecol. Notes, 2008, vol. 8, pp. 103—106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  Google Scholar 

  25. Hedrick, P.W., Genetics of Populations, Sudbury, MA: Jones and Bartlett, 2000, 2nd ed.

    Google Scholar 

  26. Larionova, A.Ya., Kravchenko, A.N., Ekart, A.K., and Oreshkova, N.V., Genetic diversity and population differentiation of forest-forming coniferous species in Middle Siberia, Khvoinye Boreal’noi Zony, 2007, vol. 24, nos. 2—3, pp. 235—242.

    Google Scholar 

  27. Potenko, V.V., Isozyme polymorphism and phylogenetic interrelations of conifer species of the Russian Far East, Extended Abstract of Doctoral Dissertation, Biol.-Pochv. Inst. Dalnevost. Otd. Ross. Akad. Nauk, Vladivostok, 2004.

  28. Krutovskii, K.V. and Bergmann, F., Introgressive hybridization and phylogenetic relationships between Norway Picea abies (L.) Karst. and Siberian Picea obovata Ledeb. spruce species studied by isozyme loci, Heredity, 1995, vol. 74, pp. 464—480. https://doi.org/10.1038/hdy.1995.67

    Article  CAS  Google Scholar 

  29. Semerikova, S.A., Population-taxonomic structure of fir species (Abies Mill., Pinaceae) in northeastern Eurasia, Extended Abstract of Cand. Sci. Dissertation, Institut Ekologii Rasteniy i Zhivotnykh Ural’skogo Otdeleniya Rossiyskoy Akademii Nauk, Ekaterinburg, 2008.

  30. Sannikov, S.N. and Petrova, I.V., Phylogenogeography and genotaxonomy of Pinus sylvestris L. populations, Russ. J. Ecol., 2012, no. 4, pp. 273—280. https://doi.org/10.1134/S1067413612040145

  31. Tikhonova, I.V., Semerikov, V.L., Shishikin, A.S., and Tarakanov, V.V., On the need for a special regime of management and protection in refugium (relict) populations of coniferous species in Siberia, Lesn. Khoz., 2011, no. 3, pp. 41—42.

  32. Ledig, F.T., Human impacts on genetic diversity in forest ecosystems, Oikos, 1992, vol. 63, pp. 87—108. https://doi.org/10.2307/3545518

    Article  Google Scholar 

  33. Young, A., Boyle, T., and Brown, T., The population genetic consequences of habitat fragmentation for plants, Trends Ecol. Evol., 1996, vol. 11, pp. 413—418. https://doi.org/10.1016/0169-5347(96)10045-8

    Article  CAS  PubMed  Google Scholar 

  34. Buchert, G.P., Rajora, O.P., Hood, J.V., and Dancik, B.P., Effects of harvesting on genetic diversity in old-growth eastern white pine (Pinus strobes L.) in Ontario, Canada, Conserv. Biol., 1997, no. 11, pp. 747—758. https://doi.org/10.1046/j.1523-1739.1997.96074.x

  35. Adams, W.T., Zuo, J.J., Shimizu, Y., and Tappeiner, J.C., Impact of alternative regeneration methods on genetic diversity in coastal Douglas-fir, For. Sci., 1998, vol. 44, no. 3, pp. 390—396.

    Google Scholar 

  36. Rajora, O.P., Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce, Theor. Appl. Genet., 1999, vol. 99, pp. 954—961. https://doi.org/10.1007/s001220051402

    Article  CAS  Google Scholar 

  37. Lise, Y., Kaya, Z., Isik, F., et al., The impact of overexploitation on the genetic structure of Turkish red pine (Pinus brutia Ten.) populations determined by RAPD markers, Silva Fenn., 2007, vol. 41, pp. 211—220.

    Article  Google Scholar 

  38. Marquard, P.E., Echt, C.S., Epperson, B.K., and Pubanz, D.M., Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions, Can. J. For. Res., 2007, vol. 37, pp. 2652—2662. https://doi.org/10.1139/X07-114

    Article  CAS  Google Scholar 

  39. Padutov, V.E., Khotyleva, L.V., Baranov, O.U., and Ivanovskaya, S.I., Genetic effects of transformation of forest ecosystems, Ekol. Genet., 2008, vol. 6, no. 1, pp. 3—11.

    Google Scholar 

  40. Ortego, J., Bonal, R.L., and Munoz, A., Genetic consequences of habitat fragmentation in long-lived tree species: the case of the Mediterranean holm oak (Quercus ilex L.), Heredity, 2010, vol. 101, pp. 717—726. https://doi.org/10.1093/jhered/esq081

    Article  CAS  Google Scholar 

  41. Nale, D.B., Genetic implications of shelterwood regeneration of Douglas-fir in southwest Oregon, For. Sci., 1985, vol. 31, no. 4, pp. 995—1005.

    Google Scholar 

  42. El-Kassaby, Y.A. and Benowicz, A., Effects of commercial thinning on genetic, plant species and structural diversity in second-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands, For. Genet., 2000, vol. 7, pp. 193—203.

    Google Scholar 

  43. Il’inov, A.A., Politov, D.V., and Raevskii, B.V., Influence of reforestation methods on the genetic structure of Finnish spruce, Picea × fennica (Regel) Kom. populations, Uch. Zap. Petrozavodsk. Gos. Univ., Biol. Nauki, 2010, vol. 109, no. 4, pp. 50—55.

    Google Scholar 

  44. Ratnam, W., Rajora, O.P., Finkeldey, R., et al., Genetic effects of forest management practices: global synthesis and perspectives, For. Ecol. Manage., 2014, vol. 333, pp. 52—65. https://doi.org/10.1016/j.foreco.2014.06.008

    Article  Google Scholar 

  45. Larionova, A.Ya. and Ekart, A.K., Genetic structure and differentiation of Siberian fir populations located at varied elevations in Western Sayan, Ekol. Genet., 2005, vol. 3, no. 2, pp. 22—27.

    CAS  Google Scholar 

  46. Larionova, A.Ya. and Ekart, A.K., Genetic structure and differentiation of Siberian fir populations in the Tomsk region, Vestn. Tomsk. Gos. Univ., 2012, no. 354, pp. 187—191.

  47. Aguirre-Planter, E., Glenn, G.R., and Eguiarte, L.E., Low levels of genetic variation within and high levels of genetic differentiation among populations of species of Abies from southern Mexico and Guatemala, Am. J. Bot., 2000, vol. 87, no. 3, pp. 362—371. https://doi.org/10.2307/2656632

    Article  CAS  PubMed  Google Scholar 

  48. Zamolodchikov, D.G., Assessment of climatogenic changes in the diversity of tree species based on forest inventory data, Usp. Sovrem. Biol., 2011, vol. 131, no. 4, pp. 382—392.

    Google Scholar 

  49. Danusevicius, D., Kerpauskaite, V., Kavaliauskas, D., et al., The effect of tending and commercial thinning on the genetic diversity of Scots pine stands, Eur. J. For. Res., 2016, vol. 135, pp. 1159—1174. https://doi.org/10.1007/s10342-016-1002-7

    Article  CAS  Google Scholar 

  50. Sannikov, S.N. and Sannikov, D.S., The system of felling and renewal of pine forests on an ecological-genogeographic basis, Sib. Lesn. Zh., 2015, no. 6, pp. 3—16. https://doi.org/10.15372/SJFS20150601

  51. Rajora, O.P., Rahman, M.H., Buchert, G.P., and Dancik, B.P., Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Mol. Ecol., 2000, vol. 9, pp. 339—348. https://doi.org/10.1046/j.1365-294x.2000.00886.x

    Article  CAS  PubMed  Google Scholar 

  52. Amundson, R., The Changing Role of the Embryo in Evolutionary thought Roots of Evo–Devo, Cambridge: Cambridge Univ. Press, 2005. https://doi.org/10.1017/CBO9781139164856

    Book  Google Scholar 

  53. Wagner, G.P., The developmental genetics of homology, Nat. Rev. Genet., 2007, vol. 8, pp. 473—479. https://doi.org/10.1038/nrg2099

    Article  CAS  PubMed  Google Scholar 

  54. Tarakanov, V.V., Dubovik, D.S., Rogovtsev, R.V., et al., Current state and prospects for the development of the genetic selection complex of conifers in Siberia (by the example of the Novosibirsk region), Vestn. Povolzh. Gos. Tekhnol. Univ., Ser. Lesn. Ekol. Prirodopol’zovaniya, 2019, no. 3(43), pp. 5—24. https://doi.org/10.25686/2306-2827.2019.3.5

Download references

Funding

This work was performed within the budgetary project of the West Siberian Department of the Sukachev Institute of Forest, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences (project no. 0356-2019-0024), and was supported by the Russian Foundation for Basic Research, Government of Krasnoyarsk krai, and Krasnoyarsk Regional Science Foundation within the scientific project no. 18-44-240002 “Studying Genetic Diversity of the Main Forest-Forming Coniferous Species in Suburban Forests of Large Industrial Centers of Siberia.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Tikhonova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals as an object.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving human participants as an object.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonova, I.V., Ekart, A.K., Kravchenko, A.N. et al. Genetic Variability in Pinus sylvestris, Picea obovata, and Abies sibirica Populations and in Felling in the Southern Taiga of Central Siberia. Russ J Genet 57, 297–310 (2021). https://doi.org/10.1134/S1022795421030133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421030133

Keywords:

Navigation