Skip to main content
Log in

Trace metal and vitamin requirements of Methanococcoides methylutens grown with trimethylamine

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Trace organic nutrient and metal requirements for the growth of Methanococcoides methylutens strain TMA-10 were determined in defined medium that contained trimethylamine as the substrate. Biotin was the only organic supplement required in place of yeast extract, Trypticase or a mixture of 8 B-vitamins. Fe an Ni were required for growth and low concentrations of Fe2+ (<5 μM) and Ni2+ (<0.25 μM) provided limited growth. In the absence of added Co the growth rate was reduced by 94% and growth was limited at concentrations below 0.1 μM. Stimulation of growth by Se, Mo, B, Al, Zn, Mn or Cu could not be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    Google Scholar 

  • Berg L van den, Lamb KA, Murray WD, Armstrong DW (1980) Effects of sulphate, iron, and hydrogen on the microbiological conversion of acetic acid to methane. J Appl Bacteriol 48:437–447

    Google Scholar 

  • Bryant MP, Tzeng SF, Robinson IM, Joyner AE, Jr (1971) Nutrient requirements of methanogenic bacteria. In: Pohland FG (ed) Advan Chem Ser 105. American Chemical Society, Washington, pp 23–40

    Google Scholar 

  • Davey EW, Gentile JH, Erickson SJ, Betzer P (1970) Removal of trace metals from marine culture media. Limnol Oceanog 15:486–488

    Google Scholar 

  • Dickert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol 148:459–464

    Google Scholar 

  • Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure of coenzyme F420 from Methanobacterium sp. M.o.H. Biochem 17:4583–4593

    Google Scholar 

  • Graf E-G, Thauer RK (1981) Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett 136:165–169

    Google Scholar 

  • Hatchikian EC, Bruschi M, Forget N, Scandellari M (1982) Electron-transport components from methanogenic bacteria: the ferredoxin from Methanosarcina barkeri (strain fusaro). Biochem Biophys Res Commun 109:1316–1323

    Google Scholar 

  • Hoban DJ, van der Berg L (1979) Effect of iron on conversion of acetic acid to methane during methanogenic fermentations. J Appl Bacteriol 47:153–159

    Google Scholar 

  • Jones JB, Stadtman TC (1977) Methanococcus vanniellii: culture and effects of selenium and tungsten on growth. J Bacteriol 130:1404–1406

    Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983a) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Google Scholar 

  • Jones WJ, Paynter MJB, Gupta R (1983b) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97

    Google Scholar 

  • Jüssofie A (1984) Cytochromuntersuchungen an methanogenen und acetogenen Bakterien. Disertation Univ. Göttingen

  • Keltjens JT, Caerteling CG, Kooten AM van, Dijk HF van, Vogels GD (1983) Chromophoric derivatives of coenzyme M F430, a proposed coenzyme of methanogenesis in Methanobacterium thermoautotrophicum. Arch Biochem Biophys 223:235–253

    Google Scholar 

  • Kirby TW, Lancaster JR, Jr, Fridovich I (1981) Isolation and characterization or the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210:140–148

    Google Scholar 

  • König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig 3:478–490

    Google Scholar 

  • Krzycki J, Zeikus JG (1980) Quantificatin of corrinoids in methanogenic bacteria. Curr Microbiol 3:243–245

    Google Scholar 

  • Krzycki JA, Zeikus JG (1984) Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol 158:231–237

    Google Scholar 

  • Kühn w, Gottschalk G (1983) Characterization of the cytochromes occurring in Methanosarcina species. Eur J Biochem 135:89–94

    Google Scholar 

  • Kühn W, Fiebig K, Hippe H, Mah RA, Huser BA, Gottschalk G (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 20:407–410

    Google Scholar 

  • Lancaster JR, Jr (1980) Soluble and membrane-bound paramagnetic centers in Methanobacterium bryantii. FEBS Lett 115:285–288

    Google Scholar 

  • Lancaster JR, Jr (1981) Membrane-bound flavin adenine dinucleotide in Methanobacterium bryantii. Biochem Biophys Res Commun 100:240–246

    Google Scholar 

  • Leigh JA (1983) Levels of water-soluble vitamins in methanogenic and nonmethanogenic bacteria. Appl Environ Microbiol 45:800–803

    Google Scholar 

  • Mah RA, Smith MR (1981) The methanogenic bacteria. In: Starr M, Steys H, Trüger H, Balows A, Schlegel HG (eds) The prokaryotes. Springer, New York, pp 948–977

    Google Scholar 

  • McBride BC, Wolfe RS (1971) A new coenzyme of methyl-transfer, coenzyme M. Biochem 10:2317–2324

    Google Scholar 

  • Meijden P van der, Heythuysen HJ, Pouwels A, Houwen F, Drift C van der, Vogels GD (1983) Methyltransferases involved in methanol conversion by Methanosarcina barkeri. Arch Microbiol 134:238–242

    Google Scholar 

  • Murray WD, Berg L van den (1981) Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors. Appl Environ Microbiol 42:502–505

    Google Scholar 

  • Patel GB, Roth LA, Berg L van den, Clark DS (1976) Characterization of a strain of Methanospirillum hungatii. Can J Microbiol 22:1404–1410

    Google Scholar 

  • Patel GB, Khan AW, Roth LA (1978) Optimum levels of sulphate and iron for the cultivation of pure cultures of methanogens in synthetic media. J Appl Bacteriol 45:347–356

    Google Scholar 

  • Riley JP, Taylor D (1968) Chelating resins for the concentration of trace elements from sea water and their analytical use in conjunction with atomic absorption spectrophotometry. Anal Chim Acta 40:479–485

    Google Scholar 

  • Scherer P, Sahm H (1981) Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnol 1:57–65

    Google Scholar 

  • Scherer P, Sauer C (1982) State of iron in the archaebacterium Methanosarcina barkeri grown on different carbon sources as studied by Mössbauer spectroscopy. Z Naturforschg Sect C 37:877–880

    Google Scholar 

  • Scherer P, Lippert H, Wolff G (1983) Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol Trace Element Res 5:149–163

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107

    Google Scholar 

  • Sowers KR, Ferry JG (1983) Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl Environ Microbiol 45:684–690

    Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47: 971–978

    Google Scholar 

  • Taylor GT, Pirt SJ (1977) Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch Microbiol 113:17–22

    Google Scholar 

  • Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863

    Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863

    Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    Google Scholar 

  • Zhilina TN (1983) A new obligate halophilic methane-producing bacterium. Mikrobiologiya (U.S.S.R.) 52:375–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowers, K.R., Ferry, J.G. Trace metal and vitamin requirements of Methanococcoides methylutens grown with trimethylamine. Arch. Microbiol. 142, 148–151 (1985). https://doi.org/10.1007/BF00447058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00447058

Key words

Navigation