Skip to main content
Log in

Bladder cancer angiogenesis, its role in recurrence, stage progression and as a therapeutic target

  • Tumor Angiogenesis
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

In this article we review the role of angiogenesis in bladder tumour development and its putative role in determining tumour progression and recurrence. The potential value of antiangiogenic therapy in the disease is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boring CC, Squires TS, Tong T: Cancer Statistics. CA Cancer J Clin 43: 7–26, 1993

    Google Scholar 

  2. Feldman AR, Kessler L, Myer M: The prevalence of cancer. Estimates based on Connecticut Tumour Registry. New Engl J Med 315: 1394–1396, 1986

    Google Scholar 

  3. Raghavan D, Shipley WU, Garnick MB: Biology and management of bladder cancer. N Engl J Med 322: 1129–1138, 1990

    Google Scholar 

  4. Freiha FS: Invasive bladder cancer. Current Opinion in Urology 9: 405–408, 1993

    Google Scholar 

  5. Lutzeyer W, Rubben H, Dahm H: Prognostic parameters in superficial bladder cancer: Analysis of 315 cases. J Urol 127: 250, 1992

    Google Scholar 

  6. Macjenzie N, Torti FM, Faysal M: The natural history of superficial bladder cancer. Proc Amer Ass Cancer Res 22: 198, 1980

    Google Scholar 

  7. Torti FM, Lum BL: The biology and treatment of superficial bladder cancer. J Clin Oncol 2: 505, 1984

    Google Scholar 

  8. Herr JW, Jakse G, Sheinfeld J: The T1 bladder. Seminars in Urology 8: 254–261, 1990

    Google Scholar 

  9. Craft PS, Harris AL: Clinical prognostic significance of tumour angiogenesis. Annals of Oncology 5: 305–311, 1994

    Google Scholar 

  10. Dickenson A, Fox S, Persad R, Hollyer J, Sibley G, Harris A: Quantification of angiogenesis as an independent predictor in invasive bladder carcinoma. Br J Urol 74: 762–766, 1994

    Google Scholar 

  11. Jaeger T, Weidner N, Chew K, Tumour angiogenesis correlates with lymph node metastasis in invasive bladder cancer. J Urol 154: 69–71, 1994

    Google Scholar 

  12. Bochner BH, Cote RJ, Groshen S, Esrig D, Freeman JA, Weidner N, Chen S-C, Skinner DG, Nichols PW: Tumor angiogenesis is an independent prognostic indicator in invasive transitional cell carcinoma of the bladder (Abstract). J Urol 153: 456A, 1995

  13. Rifkin D, Moscatelli D: Recent developments in the cell biology of basic fibroblast growth factor. J Cell Biol 109: 1–6, 1989

    Google Scholar 

  14. Nguyen M, Watanabe H, Budson AE, Ritchie JP, Hayes DF, Folkman J: Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancer. J Natl Cancer Inst 86: 356–361, 1994

    Google Scholar 

  15. Chopin DK, Caruelle JP, Colombel M, Palcy S, Ravery V, Caruelle D, Abbou C, Barritault D: Increased immunodetection of acidic fibroblast growth factor in bladder cancer, detectable in urine. J Urol 150: 1126–1130, 1993

    Google Scholar 

  16. Chodak GW, Scheiner CJ, Zetter BR: Urine from patients with transitional cell carcinoma stimulates migration of capillary endothelial cells. New Engl J Med 305: 869, 1981

    Google Scholar 

  17. Chodak GW, Hospelhorn V, Judge SM: Increased levels of fibroblast growth factor-like activity in urine from patients with bladder and kidney cancer. Cancer Res 48: 2083–2088, 1988

    Google Scholar 

  18. Nguyen M, Watanabe H, Budson AE, Ritchie JP, Folkman J: Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J Natl Cancer Inst 85: 241–242, 1993

    Google Scholar 

  19. O'Brien TS, Smith K, Cranston D, Fuggle S, Bicknell R, Harris AL: Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br J Urol 76: 311–314, 1995

    Google Scholar 

  20. Zein T, Wajsman Z, Englander LS, Gamarra M, Lopez C, Huben RP, Pontes JE: Evaluation of bladder washings and urine cytology in the diagnosis of bladder cancer and correlation with selected biopsies of the bladder mucosa. J Urol 132: 670–671, 1984

    Google Scholar 

  21. Leung D, Cachianes G, Kuang W-J, Goeddel D, Ferrara N: Vascular endothelial growth factor is a secreted mitogen. Science 246: 1306–1309, 1989

    Google Scholar 

  22. Klagsbrun M, Soker S: VEGF/VPF: the angiogenesis factor found? Current Biol 3: 699–702, 1993

    Google Scholar 

  23. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Felder J, Connolly DT: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312, 1989

    Google Scholar 

  24. DeVries C, Escobedo JA, Uero H, Houck K, Ferrara N, Williams LT: The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989–991, 1992

    Google Scholar 

  25. Terman B, Dougher-Vemazen M, Carrion M, Dimitrov D, Armellino D, Gospodarowicz D, Bohlen P, Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor. Biochem Biophys Res Comm 187: 1579–1586, 1992

    Google Scholar 

  26. Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Senger DR, Dvorak HF: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 53: 4727–4735, 1993

    Google Scholar 

  27. Senger D, Perruzzi CA, Feder J, Dvorak HF: A highly conserved vascular permeability factor secreted by a variety of human and rodent tumour cell lines. Cancer Res 46: 5269–5275, 1986

    Google Scholar 

  28. Plate K, Breier G, Weich H, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in vivo. Nature 359: 845–847, 1992

    Google Scholar 

  29. Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR: Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages and tumours. Mol Biol Cell 3: 211–220, 1992

    Google Scholar 

  30. Brown LF, Berse B, Tognazzi K, Manseau EJ, Van de Water L, Senger DR, Dvorak HF: Vascular permeability factor mRNA and protein expression in human kidney. Kidney Int 42: 1457–1461, 1992

    Google Scholar 

  31. Monacci WT, Merrill MJ, Oldfield EH: Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissue. Am J Physiol 264: C995-C1002, 1993

    Google Scholar 

  32. Ferrara N: Vascular endothelial growth factor. Trends Cardiovasc Med 3: 244–250, 1993

    Google Scholar 

  33. Brown L, Berse B, Jackman R, Tognazzi K, Manseau E, Dvorak H, Senger D: Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder cancer. Cancer Res 143: 1255–1262, 1993

    Google Scholar 

  34. O'Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL: Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 55: 510–513, 1995

    Google Scholar 

  35. Furukawa T, Yoshimura A, Sumizawa T, Haraguchi M, Akiyama SI: Angiogenesis factors [Letter]. Nature 356: 668, 1992

    Google Scholar 

  36. Moghaddan A, Bicknell R: Expression of platelet-derived endothelial cell growth factor in Escherichria Coli and confirmation of thymidine phosphorylase activity. Biochem 31: 12141–12146, 1992

    Google Scholar 

  37. Ishikawa F, Miyazono K, Hellman U: Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 338: 557–562, 1989

    Google Scholar 

  38. Haraguchi M, Kazutaka M, Uemura K, Sumizawa T, Furukawa T, Yamada K, Akiyama S-I: Angiogenic activity of enzymes. Nature 368: 198, 1994

    Google Scholar 

  39. Miyadera K, Sumizawa T, Haraguchi M, Yoshida H, Konstanty W, Yamada Y, Akiyama S: Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/ thymidine phosphorylase. Cancer Res 58: 1687–1690, 1995

    Google Scholar 

  40. Eda H, Fujimoto K, Watanabe S, Ura M, Hino A, Tanaka Y, Wada K, Ishitsuka H: Cytokines induce thymidine phosphorylase expression in tumour cells and make them more susceptible to 5′-deoxy-5-fluorouridine. Cancer Chemo Pharm 32: 333–338, 1993

    Google Scholar 

  41. Fox S, Turley H, Mogghaddam A, O'Brien T, Gatter K, Bicknell R, Harris A, Dickenson A: Platelet derived endothelial cell growth factor/thymidine phosphorylase is elevated in bladder cancer. (Abstract). J Urol 153: 521A, 1995

  42. Rosen EM, Grant DS, Kleinman HK, Goldberg ID, Bhargara MM, NichollofKinsella JL, Polverini P: Scatter factor (hepatocyte growth factor) is a potent angiogenic factor in vivo. Symp Soc Exp Biol 47: 227–234, 1993

    Google Scholar 

  43. Grant DS, Kleinman HK, Goldberg ID, Bhargara MM, Nicholloff EJ, Kinsella JL, Polverini P, Rosen EM: Scatter factor induces blood vessel formation in vivo. Cell Biol 90: 1937–1941, 1993

    Google Scholar 

  44. Chowdury S, O'Shaunessy P, Goldberg ID, Rosen EM: Expression of scatter factor in human bladder carcinoma. J Nat Cancer Inst 87: 372–377, 1995

    Google Scholar 

  45. Fang W, Hartmann N, Chow DT, Riegel AT, Wellstein A: Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells and is expressed in human cancer. J Biol Chem 267: 25889–25897, 1992

    Google Scholar 

  46. Garver RI, Radford DM, Donis-Keller H, Wick MR, Milner PG: Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 74: 1584–1590, 1994

    Google Scholar 

  47. Sidransky D, Frost P, Von Eschenbach A, Oyasu R, Preisinger AC, Vogelstein B: Clonal origin of bladder cancer. N Engl J Med 11: 737–740, 1992

    Google Scholar 

  48. Lunec J, Challen C, Wright C, Mellon K, Neal DE: Amplification of c-erbB2 and mutations of p53 in concomitant transitional cell carcinoma of the renal pelvis and urinary bladder. Lancet 339: 439, 1992

    Google Scholar 

  49. Harris AL, Neal DE: Bladder cancer — Field versus clonal origin. N Engl J Med 11: 759–761, 1992

    Google Scholar 

  50. Soloway MS, Masters S: Urothelial susceptibility to tumour cell implantation — influence of cauterization. Cancer 46: 1158, 1980

    Google Scholar 

  51. See WA, Chapman WH: Tumour cell implantation following neodymium-YAG bladder injury: a comparison to electrocautery injury. J Urol 137: 1266–1269, 1987

    Google Scholar 

  52. Wallace DMA, Smith JHF, Billington S, Smith MR, Stemplewski HE, Tipton PW: Promotion of bladder tumours by endoscopic procedures in an animal model. Br J Urol 56: 658–662, 1984

    Google Scholar 

  53. Herr HW, Laudone VP, Whitmore WF Jr: An overview of intravesical therapy for superficial bladder tumours. J Urol 138: 1363–1368, 1987

    Google Scholar 

  54. Badalament RA, Ortolano V, Burgers JK: Recurrent and aggressive bladder cancer. Urol Clin North Am 19: 485–498, 1992

    Google Scholar 

  55. Dalbagni G, Presti J, Reuter V, Fair WR, Cordon CC: Genetic alteration in bladder cancer. Lancer 342: 469–471, 1993

    Google Scholar 

  56. Spruck C, III Ohneseit PF, Gonzalez ZM, Esrig D, Miyao N, Tsai YC, Lerner SP, Schmutte C, Yang AS, Cote R, Dubeau L, Nicols P, Hermann G, Steven K, Horn T, Skinner D, Jones P: Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 54: 784–788, 1994

    Google Scholar 

  57. Sarkis AS, Dalbagni G, Gordon-darbo C, Melamed J, Zhang Z-F, Sheinfeld J, Fair WR, Herr HW, Reuter VE: Association of P53 nuclear over expression and tumour progression in carcinoma in situ of the bladder. J Urol 152: 388–392, 1994

    Google Scholar 

  58. Miyao N, Tsai YC, Lerner SP, Olumi AF, Spruck III CH, Gonzalez-Zulueta M, Nichols PW, Skinner DG, Jones PA: Role of chromosome 9 in bladder cancer. Cancer Res 53: 4066–4070, 1993

    Google Scholar 

  59. Lipponen PK: Over-expression of p53 nuclear oncoprotein in transitional-cell bladder cancer and its prognostic value. Int J Cancer 53: 365–370, 1993

    Google Scholar 

  60. Brewster SF, Gingell JC, Brown KW: Tumour suppressor genes in urinary tract oncology. Br J Urol 70: 585–590, 1992

    Google Scholar 

  61. Sandberg AA, Berger CS: Review of chromosome studies in urological tumours. II. Cytogenetic and molecular genetics of bladder cancer. J Urol 151: 545–560, 1994

    Google Scholar 

  62. Esrig D, Elmanjian D, Groshen S, Freeman JA, Stein JP, Chen S-C, Nichols PW, Skinner DG, Jones PA, Cote RJ: Accumulation of nuclear p53 and tumour progression in bladder cancer. N Eng J Med 331: 1259–1264, 1994

    Google Scholar 

  63. Lipponen P, Eskelinen M: Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long term prognosis. Br J Cancer 69: 1120–1125, 1994

    Google Scholar 

  64. Keiser A, Weich HA, Brandner G, Marmé D, Kolch W: Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 9: 963–969, 1994

    Google Scholar 

  65. Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–1584, 1994

    Google Scholar 

  66. Ueba T, Nosaka T, Takahashi JA, Shibata F, Florkiewicz RZ, Vogelstein B, Oda Y, Kikuchi H, Hatanaka M: Transcriptional regulation of basic fibroblast growth factor by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci 91: 9009–9013, 1994

    Google Scholar 

  67. Newman LH, Tannenbaum M, Droller MJ: Muscle-invasive bladder cancer: does it arise de novo or from pre-existing superficial disease? Urology 32: 58–62, 1988

    Google Scholar 

  68. Folkman J, Shing J: Angiogenesis. J Biol Chem 267: 10931–10934, 1992

    Google Scholar 

  69. Fox S, Gatter K, Bicknell R, Going J, Stanton P, Cooke T, Harris AL: Relationship of endothelial cell proliferation to tumour vascularity in human breast cancer. Cancer Research 53: 4161–4163, 1993

    Google Scholar 

  70. Scott P, Harris AL: Current approaches to targeting cancer using angiogenesis therapies. Cancer Treat Rev 20: 393–412, 1994

    Google Scholar 

  71. Bicknell R, Harris AL: Anticancer strategies involving the vasculature: vascular targeting and the inhibition of angiogenesis. Sem Cancer Biol 3: 399–407, 1992

    Google Scholar 

  72. Braddock PS, Hu D-E, Fan T-PTD, Stratford IJ, Harris AL, Bicknell R: A structure-activity analysis of antagonism of the growth factor angiogenic activity of basic fibroblast growth factor by suramin and related polyanions. Br J Cancer 69: 890–898, 1994

    Google Scholar 

  73. Orlander JV, Connolly DT, Delarco JE: Specific binding of vascular permeability factor to endothelial cells. J Biol Chem 266: 9661–9666, 1991

    Google Scholar 

  74. Persanti E, Sola F, Mongelli N, Grandi M, Spreafico F: Suramin prevents neovascularisation and tumour growth through blocking of basic fibroblast growth factor activity. Br J Cancer 66: 367–372, 1992

    Google Scholar 

  75. Eisenberger M, Reyno L, Jodrell D: Suramin, an active drug for prostatic cancer: interim observations in a phase 1 trial. J Natl Cancer Inst 85: 611–621, 1993

    Google Scholar 

  76. Folkman J, Langer R, Linhardt RJ, Haudenchild C, Taylor S: Angiogenesis inhibition and tumour regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221: 719–735, 1983

    Google Scholar 

  77. Thorpe PE, Derbyshire EJ, Andrade SP, Press N, Knowles PP, King S, Watson GJ, Yahg Y-C, Rao-Bette M; Heparinsteroid conjugates: new angiogenesis inhibitors with antitumour activity in mice. Cancer Res 53: 3000–3007, 1993

    Google Scholar 

  78. Hori A, Sasada R, Matsutani E, Naito K, Sakura Y, Fujita T, Kozai Y: Suppression of solid tumour growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 51: 6180–6184, 1991

    Google Scholar 

  79. Kim KJ, Li B, Winer J, Armanini M, Gillet N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844, 1993

    Google Scholar 

  80. Kondo S, Asano M, Suzuki H: Significance of vascular endothelial growth factor/vascular permiability factor for solid tumour growth and its inhibition by the antibody. Biochem Biophys Res Commun 914: 1234–1241, 1993

    Google Scholar 

  81. D'Amato RJ, Loughnan MS, flynn E, Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082–4085, 1994

    Google Scholar 

  82. O'Reilly M, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses A, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328, 1994

    Google Scholar 

  83. Chen C, Parangi S, Tolentino MJ, Folkman J: A strategy to discover circulating angiogenesis inhibitors generated by human tumours. Cancer Res 55: 4230–4233, 1995

    Google Scholar 

  84. Tolsma SS, Volpert PV, Good DJ, Frazier WA, Polverini PJ, Bouck N: Peptides derived from two separate domains of the matrix protein thrombospondin-1 have antiangiogenic activity. J Cell Biol 122: 497–511, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crew, J.P., O'Brien, T.S. & Harris, A.L. Bladder cancer angiogenesis, its role in recurrence, stage progression and as a therapeutic target. Cancer Metast Rev 15, 221–230 (1996). https://doi.org/10.1007/BF00437475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00437475

Key words

Navigation